• 제목/요약/키워드: F-18

검색결과 4,219건 처리시간 0.033초

친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구 (Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction)

  • 문병석;김재홍;이교철;안광일;천기정;전권수
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권4호
    • /
    • pp.228-232
    • /
    • 2006
  • 목적 : $[^{18}F]F_2\;(T_{1/2}=110\;min)$ 기체를 이용하여 친전자성 치환반응으로 방사성동위원소 $^{18}F$을 표지하는 방법은 새로운 앙전자방출단층촬영용 방사성의약품 개발 분야에서 유용하게 이용되고 있다. 그림에도 불구하고 $[^{18}F]F_2$를 높은 생산수율과 비방사능으로 생산하기 위한 표적 개발 연구는 아직도 진행 중에 있다. 본 연구에서는 친핵성 치환반응으로 $^{18}F$을 도입하기 어려운 방사성의약품에 친전자성 치환반응으로 방사성동위원소를 도입할 수 있는 $[^{18}F]F_2$ 가스의 효율적인 생산에 관해 연구하였다. 대상 및 방법: 표적은 원추형 모양의 알루미늄 재질로 제작하였다. $[^{18}F]F_2$ 생산을 위한 핵반응으로 $^{18}O(p,n)^{18}F$를 사용하였으며, two-step 빔 조사방법을 이용하였다. 첫 번째 조사는 농축 $[^{18}O]O_2$가스를 표적에 충진한 후 빔 조사하여 $^{18}O(p,n)^{18}F$ 핵반응을 일으킴으로써 $^{18}F$를 생산한다. 생산된 $^{18}F$은 표적 챔버 기벽에 흡착된다. $[^{18}O]O_2$은 재사용을 위하여 냉각포획법으로 회수하였으며, $^{18}F$를 회수하기 위해 $[^{19}F]F_2/Ar$ 가스를 충진한 후, 두 번째 빔을 조사하여 방사성불소를 회수하는 방법으로 구성된다. 본 연구에서는 최적의 방사성불소 생산 조건을 찾기 위해 빔 조사 시간, 빔 전류 세기 농축 $[^{18}O]O_2$ 충진 압력 등의 변화에 따라 생산량을 평가하였다. 결과: 빔 조사 시간, 빔 전류, 농축 $[^{18}O]O_2$ 충진 압력 등의 조건을 변화시키면서 생산량을 평가한 결과 최적의 빔 조사 조건은 다음과 같다. 첫 번째 조사: 농축 $[^{18}O]O_2$을 약 15.0 bar충진, 13.2 MeV, 30 ${\mu}A$로 60-90분 조사; 두 번째 조사: 1% $[^{19}F]F_2/Ar$혼합가스 12.0 bar 충진, 13.2 MeV, 30 ${\mu}A$로 20-30분 조사 후 아르곤 가스로 회수하였을 때 EOB(end of bombardment) 기준으로 약 $34{\pm}6.0$ GBq(n>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.

18F-Florbetaben 주사 시 Activity 손실과 통증 감소를 위한 방법 (Method to Reduce the Activity Loss and Pain when Injecting 18F-Florbetaben)

  • 권형진;최진욱;이형진;우재룡;김유경
    • 핵의학기술
    • /
    • 제20권2호
    • /
    • pp.42-45
    • /
    • 2016
  • $^{18}F-Florbetaben$은 베타아밀로이드 병리를 확인하여 인지 장애 및 의심 환자에게 보조적 진단으로 사용되고 있다. 지질 친화성의 특성과 에탄올이 첨가된 약제의 특성상 주사 후 3-way Set에 잔량과 주사 시 환자의 통증이 관심의 대상이 된다. 본 연구는 효과적인 방사성의약품의 주사와 환자 케어 및 우수한 영상을 위함이다. 내원환자 70명을 대상으로 하였고, 환자들에게 평균 $259{\pm}74MBq$$^{18}F-FDG$ (20명), $^{18}F-FP-CIT$ (20명), $^{18}F-Florbetaben$ (30명)을 3-way Set으로 주사(Reflusing 2회, Reflusing 3회 이상)를 하여 주사 후 잔량을 측정하였고, $^{18}F-Florbetaben$ 주사 시 사용되는 3-way Set와 Heparin Cap의 효율적인 주사방법을 알아보기 위해서 주사 후 잔량을 측정하여 SPSS 12.0 ANOVA, t-test 통계분석을 통하여 잔량을 비교분석 하였다. 그리고 $^{18}F-Florbetaben$의 통증 유발 성분의 에탄올 양을 측정하기 위하여 Gas Chromatography로 추가 분석을 실시해보았다. Reflusing 2회 시 $^{18}F-FDG$: 1.48 MBq (0.04 mCi), $^{18}F-FP-CIT$: 7.4 MBq (0.2 mCi), $^{18}F-Florbetaben$: 32.6 MBq (0.88 mCi)의 잔량이 측정 되었고 Reflusing 3회 이상 시 $^{18}F-FDG$: 1.85 MBq (0.05 mCi), $^{18}F-FP-CIT$: 3.7 MBq (0.10 mCi), $^{18}F-Florbetaben$: 36.3 MBq(0.98 mCi)의 잔량이 측정 되었다. 다중 비교결과 Reflusing 2회 시 잔량이 유의미한 차이가 있었고(P < 0.05), 3회 이상 시 $^{18}F-Florbetaben$$^{18}F-FDG$, $^{18}F-FP-CIT$는 잔량의 유의미한 차이가 있었으며(P < 0.05), $^{18}F-FDG$$^{18}F-FP-CIT$는 유의미한 차이가 없었다(P > 0.05). $^{18}F-Florbetaben$ 주사 후 잔량은 3-way Set: 32.6 MBq (0.88 mCi), 36.3 MBq (0.98 mCi)였고 Heparin Cap: 7.03 MBq (0.19 mCi)으로 유의미한 차이가 있었다(P < 0.05). Gas Chromatography 분석결과 에탄올: 207665 ppm, 아세톤: 377.4 ppm으로 나타났다. $^{18}F-Florbetaben$$^{18}F-FDG$$^{18}F-FP-CIT$에 비해 주사 후 잔량이 많았고, 통증을 유발하는 에탄올 성분의 수치가 높게 나타났다. 주사 시 3-way Set 방식보다는 Heparin Cap을 사용함이 잔량 감소에 더 효과적이었다. 그리고 주사 시 환자의 통증 완화를 위해서 천천히 주사함을 권고한다.

  • PDF

Evaluation of 18F Radioactive Concentration in Exhaust at Cyclotron Facility at Chosun University

  • Jeong, Cheol-ki;Jang, Han;Lee, Goung-jin
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.37-41
    • /
    • 2016
  • The recent prevalence of PET examinations in Korea has led to an increase in the number of cyclotrons. The medical isotope $^{18}F$ produced in most cyclotron facilities currently operating in Korea is emitted into the environment during the production of [$^{18}F$]FDG, a cancerdiagnosis reagent. The amount of [$^{18}F$]FDG synthesized determines the radioactive concentration of $^{18}F$ in the exhaust. At some facilities, this amount temporarily exceeds the emission limit. In this study, we evaluated the $^{18}F$ radioactivity concentration in the exhaust from the cyclotron facility at Chosun University. The $^{18}F$ radioactivity concentration was measured using an air sampler and a HPGe semiconductor detector. The measurements showed that the radioactive concentration of $^{18}F$ in the exhaust at the cyclotron facility at Chosun University was the highest during [$^{18}F$]FDG synthesis but remained under the legal limit of $2,000Bq\;m^{-3}$.

Synthesis of 18F-labeled 2-cyanobenzothiazole derivative for efficient radiolabeling of N-terminal cysteine-bearing biomolecules

  • Jung Eun Park;Jongho Jeon
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.153-159
    • /
    • 2021
  • This article provides an efficient 18F-labeling protocol based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and N-terminal cysteine-containing biomolecules. The 18F-labeled CBT (18F-1) was prepared by radiofluorination of the tosylated precursor 4 with 18-crown-6/K+/[18F]F- complex. Using the purified 18F-1, 18F-labeled peptide (18F-7) and protein (18F-8) could be synthesized efficiently under mild conditions. This strategy would provide a convenient approach for rapid and site-specific 18F-labeling of various peptides and proteins for in vivo imaging and biomedical applications.

Synthesis of O-(3-[18F]Fluoropropyl)-L-tyrosine (L-[18F]FPT) and Its Biological Evaluation in 9L Tumor Bearing Rat

  • Moon, Byung-Seok;Kim, Sang-Wook;Lee, Tae-Sup;Ahn, Soon-Hyuk;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Chi, Dae-Yoon;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.91-96
    • /
    • 2005
  • O-(3-[$^{18}$F]Fluoropropyl)-L-tyrosine (L-[$^{18}$F]FPT) was synthesized by nucleophilic radiofluorination followed by acidic hydrolysis of protective groups and evaluated with 9 L tumor bearing rat. L-[$^{18}$F]FPT is an homologue of O-(2-[$^{18}$F]fluoroethyl)-L-tyrosine (L-[$^{18}$F]FET) which recently is studied as a tracer for tumor imaging using positron emission tomography (PET). [$^{18}$F]FPT was directly prepared from the precursor of O-(3-ptoluenesulfonyloxypropyl)- N-(tert-butoxycarbonyl)-L-tyrosine methyl ester. FPT-PET image was obtained at 60 min in 9 L tumor bearing rats. The radiochemical yield of [$^{18}$F]FPT was 0-45% (decay corrected) and the radiochemical purity was more than 95% after HPLC purification. The total time elapsed for the synthesis of [$^{18}$F]FPT was 100 min from EOB (End-of-bombardment). A comparison of uptake studies between [$^{18}$F]FPT and [$^{18}$F]FET was performed. In biodistribution, [$^{18}$F]FPT showed similar pattern with [$^{18}$F]FET in various tissues, but [$^{18}$F]FPT showed low uptake in brain. Furthermore, [$^{18}$F]FPT showed higher tumor-to-brain ratio than [$^{18}$F]FET. In conclusion, [$^{18}$F]FPT seems to be more useful amino acid tracer than [$^{18}$F]FET for brain tumors imaging with PET.

High Yielding [18F]Fluorination Method by Fine Control of the Base

  • Lee, Sang-Ju;Oh, Seung-Jun;Chi, Dae-Yoon;Moon, Dae-Hyuk;Ryu, Jin-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2177-2180
    • /
    • 2012
  • New [$^{18}F$]F-fluorination methods using a minimized amount of precursor has been developed by controlling the base concentration. In the first method, pre-conditioning of the anion exchange cartridge with $K_2CO_3$ solution or water was carried out. The trapped [$^{18}F$]fluoride on the cartridge was then eluted by KOMs or KOTf solution. [$^{18}F$]F-Fluorination could be performed without additional base. In the second method, the QMA cartridge was preconditioned with KOMs solutions. Trapped [$^{18}F$]fluoride on the QMA was then eluted with KOMs and additional base, such as KOH, $K_2CO_3$, and $KHCO_3$, was added into the reaction vessel. Method 1 showed a [$^{18}F$]F-incorporation yield of 20.9% for [$^{18}F$]FLT synthesis with 5 mg of precursor. Unlike method 1, a [$^{18}F$]F-incorporation yield of 91.4% was achieved from the same amount of precursor in method 2.

A Novel Melanin-Targeted 18F-PFPN Positron Emission Tomography Imaging for Diagnosing Ocular and Orbital Melanoma

  • Yiyan Wang;Xinghua Wang;Jie Zhang;Xiao Zhang;Yang Cheng;Fagang Jiang
    • Korean Journal of Radiology
    • /
    • 제25권8호
    • /
    • pp.742-748
    • /
    • 2024
  • Objective: 18F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy) picolinamide (18F-PFPN) is a novel positron emission tomography (PET) probe designed to specifically targets melanin. This study aimed to evaluate the diagnostic feasibility of 18F-PFPN in patients with ocular or orbital melanoma. Materials and Methods: Three patients with pathologically confirmed ocular or orbital melanoma (one male, two females; age 41-59 years) were retrospectively reviewed. Each patient underwent comprehensive 18F-PFPN and 18F-fluorodeoxyglucose (18F-FDG) PET scans. The maximum standardized uptake value (SUVmax) of the lesion and the interference caused by background tissue were compared between 18F-PFPN and 18F-FDG PET imaging. In addition, the effect of intrinsic pigments in the uvea and retina on the interpretation of the results was examined. The contralateral non-tumorous eye of each patient served as a control. Results: All primary tumors (3/3) were detected using 18F-PFPN PET, while only two primary tumors were detected using 18F-FDG PET. Within each lesion, the SUVmax of 18F-PFPN was 2.6 to 8.3 times higher than that of 18F-FDG. Regarding the quality of PET imaging, the physiological uptake of 18F-FDG PET in the brain and periocular tissues limited the imaging of tumors. However, 18F-PFPN PET minimized this interference. Notably, intrinsic pigments in the uvea and retina did not cause abnormal concentrations of 18F-PFPN, as no anomalous uptake of 18F-PFPN was detected in the healthy contralateral eyes. Conclusion: Compared to 18F-FDG, 18F-PFPN demonstrated higher detection rates for ocular and orbital melanomas with minimal interference from surrounding tissues. This suggests that 18F-PFPN could be a promising clinical diagnostic tool for distinguishing malignant melanoma from benign pigmentation in ocular and orbital melanomas.

비소세포성 폐암에서의 $^{18}F-FDG$ PET의 임상 이용 (Clinical Application of $^{18}F-FDG$ PET in Non-Small Cell Lung Cancer)

  • 최준영
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권sup1호
    • /
    • pp.17-28
    • /
    • 2008
  • This review focuses on the clinical use of $^{18}F-FDG$ PET to evaluate solitary pulmonary nodule (SPN) and non-small cell lung cancer (NSCLC). When SPN or mass without calcification is found on chest X-ray or CT, $^{18}F-FDG$ PET is an effective modality to differentiate benign from malignant lesions. For initial staging of NSCLC, $^{18}F-FDG$ PET is useful, and proved to be cost-effective in several countries. $^{18}F-FDG$ is useful for detecting recurrence, restaging and evaluating residual tumor after curative therapy in NSCLC. For therapy response assessment, $^{18}F-FDG$ PET may be effective after chemotherapy or radiation therapy. $^{18}F-FDG$ PET is useful to predict pathological response after neoadjuvant therapy in NSCLC. For radiation therapy planning, $^{18}F-FDG$ PET may be helpful, but requires further investigations. PET/CT is better for evaluating NSCLC than conventional PET.

식도암에서의 $^{18}F-FDG$ PET의 임상 이용 (Clinical Application of $^{18}F-FDG$ PET in Esophageal Cancer)

  • 최준영
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권sup1호
    • /
    • pp.32-38
    • /
    • 2008
  • This review focuses on the clinical use of $^{18}F-FDG$ PET in esophageal cancer. For initial staging of esophageal cancer, $^{18}F-FDG$ PET is better than chest CT and is complementary to endoscopic ultrasound. Due to its good results for detecting distant metastasis, $^{18}F-FDG$ PET evades unnecessary curative surgery. Also, PET findings are associated with prognosis in esophageal cancer. $^{18}F-FDG$ PET seems to be useful for detecting recurrence and restaging in esophageal cancer. For therapy response assessment, $^{18}F-FDG$ PET is effective after chemotherapy or radiation therapy. $^{18}F-FDG$ PET is useful to predict pathological response after neoadjuvant therapy in esophageal cancer, which is better than chest CT and endoscopic ultrasound. For radiation therapy planning, $^{18}F-FDG$ PET may be helpful, but requires further investigations.

Diagnostic Value of 18F-FDG PET/CT in Comparison to Bone Scintigraphy, CT and 18F-FDG PET for the Detection of Bone Metastasis

  • Liu, Ning-Bo;Zhu, Lei;Li, Ming-Huan;Sun, Xiao-Rong;Hu, Man;Huo, Zong-Wei;Xu, Wen-Gui;Yu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3647-3652
    • /
    • 2013
  • Purpose: To evaluate the diagnostic value of $^{18}F$-FDG PET/CT for detection of bone metastasis in comparison with the efficacies of $^{18}F$-FDG PET/CT, CT, $^{18}F$-FDG PET and conventional planar bone scintigraphy in a series of cancer patients. Methods: Five hundred and thirty patients who underwent both $^{18}F$-FDG PET/CT and bone scintigraphy within 1 month were retrospectively analyzed. The skeletal system was classified into 10 anatomic segments and interpreted blindly and separately. For each modality, the sensitivity, specificity, accuracy, PPV and NPV were calculated and the results were statistically analyzed. Results: Bone metastases were confirmed in 117 patients with 459 positive segments. On patient-based analysis, the sensitivity, specificity, accuracy, PPV and NPV of $^{18}F$-FDG PET/CT were significantly higher than bone scintigraphy, CT and $^{18}F$-FDG PET (P<0.05). On segment-based analysis, the sensitivity of CT, bone scintigraphy, $^{18}F$-FDG PET and $^{18}F$-FDG PET/CT were 70.4%, 89.5%, 89.1% and 97.8%, respectively (P<0.05, compared with $^{18}F$-FDG PET/CT). The overall specificity and accuracy of the four modalities were 89.1%, 91.8%, 90.3%, 98.2% and 90.3%, 90.9%, 89.8%, 98.0%, respectively (P<0.05, compared with $^{18}F$-FDG PET/CT). The PPV and NPV were 89.8%, 87.6%, 85.6%, 97.2% and 85.6%, 93.2%, 92.8%, 98.6%, respectively. Three hundred and twelve lesions or segments were presented as lytic or sclerotic changes on CT images at the corresponding sites of increased $^{18}F$-FDG uptake. In lytic or mixed lesions, the sensitivity of $^{18}F$-FDG PET/CT and $^{18}F$-FDG PET were better than bone scintigraphy, while in osteoblastic lesions bone scintigraphy had a similar performance with $^{18}F$-FDG PET/CT but better than $^{18}F$-FDG PET alone. Conclusion: Our data allow the conclusion that $^{18}F$-FDG PET/CT is superior to planar bone scintigraphy, CT or $^{18}F$-FDG PET in detecting bone metastasis. $^{18}F$-FDG PET/CT may enhance our diagnosis of tumor bone metastasis and provide more information for cancer treatment.