• Title/Summary/Keyword: F-${\theta}$ Lens

Search Result 35, Processing Time 0.022 seconds

Design of a Telecentric Lens with a Smartphone Camera to Utilize Machine Vision (머신비전을 위한 스마트폰용 텔레센트릭 렌즈의 설계)

  • Choi, Yeon-Chan;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • A generalized structural design equation can be used to simplify and systematize a telecentric lens system composed of multiple lenses, as a creative design method of the authors. Through this structural equation, we have investigated the feasibility and design methodology of a telecentric lens equipped with a conventional smartphone camera for machine vision. As a result, we could verify and present a useful, generalized structural equation termed the $f{\theta}$ formula, being able to divide and combine the whole telecentric lens system into two modularized lens groups.

Development of Ftheta Lens for Laser Scanning Unit (Laser Scanning Unit용 FΘ 렌즈 개발)

  • Jeong, In-Sook;Ban, Min-Sung;Son, Kwang-Eun;Lee, Byoung-Bag
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • Ftheta Lens, whose image height is proportional to its field view angle, is one of the most important parts in Laser Scanning Unit(LSU). In this paper $f{\theta}$ lens design, mold production and modification method of lens design and mold are introduced. Lens design was carried out with Zemax and Special Toric surfaces were applied for lens surfaces to minimize distortion both in main and sub scanning directions. And a high precision machine with 1nm resolution was used to fabricate lens mold cores. After injection the lens was evaluated and the difference from design was examined. This difference was compensated by modifying lens design and new lens mold cores were made according to modified lens design to obtain the quality of original design.

Optimization of extended holographic zone plate for f-$\Theta$lens (f-theta lens용 holographic zone plate(EHZP)의 설계)

  • 이상수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.81-84
    • /
    • 1989
  • EHZP is a kind of holographic optical element, which is generated by the interference of two divergent spherical waves from point sources on the same axis. It has the spherical aberration that the focal power increases as the radial distance r increases. By using this property, optimal design of EHZP was performed for f-$\theta$ lens. As the result of optimization, the f-$\theta$ condition and the field flattening condition were well satisfied when EHZP has f0=0.803f, faR=4.076f, 1=0.406f. It was assumed for calculation of field flattening condition that the incident wave was a plane wave with the diameter of 1mm.

  • PDF

Astrometric Detectability of Parallax Effect in Gravitational Microlensing Events (중력렌즈 사건의 측성적 시차효과 검출에 대한 연구)

  • HAN CHEONGHO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • The lens mass determined from the photometrically obtained Einstein time scale suffers from large uncertainty due to the lens parameter degeneracy. The uncertainty can be substantially reduced if the mass is determined from the lens proper motion obtained from astrometric measurements of the source image centroid shifts, ${\delta}{\theta}_c$, by using high precision interferometers from space-based platform such as the Space Interferometry Mission (SIM), and ground-based interferometers soon available on several 8-10m class telescopes. However, for the complete resolution of the lens parameter degeneracy it is required to determine the lens parallax by measuring the parallax-induced deviations in the centroid shifts trajectory, ${\Delta}{\delta}{\theta}_c$ aloe. In this paper, we investigate the detectabilities of ${\delta}{\theta}_c$ and ${\Delta}{\delta}{\theta}_c$ by determining the distributions of the maximum centroid shifts, $f({\delta}{\theta}_{c,max})$, and the average maximum deviations, $(<{\Delta}{\delta}_{c,max}>)$, for different types of Galactic microlensing events caused by various masses. From this investigation, we find that as long as source stars are bright enough for astrometric observations it is expected that $f({\delta}{\theta}_c)$ for most events caused by lenses with masses greater than 0.1 $M_\bigodot$ regardless of the event types can be easily detected from observations by using not only the SIM (with a detection threshold but also the ${\delta}{\theta}_{th}\;\~3{\mu}as)$ but also the ground-based interferometers $(with\;{\delta}{\theta}_{th}\;\~3{\mu}as)$. However, from ground-based observations, it will be difficult to detect ${\Delta}{\delta}{\theta}_c$ for most Galactic bulge self-lensing events, and the detection will be restricted only for small fractions of disk-bulge and halo-LMC events for which the deviations are relatively large. From observations by using the SIM, on the other hand, detecting ${\Delta}{\delta}{\theta}_c$ will be possible for majority of disk and halo events and for a substantial fraction of bulge self-lensing events. For the complete resolution of the lens parameter degeneracy, therefore, SIM observations will be essential.

  • PDF

A Study of f-${\theta}$ Lens Design for Axisymmetric Spherical Surface for RGB Laser Display and its applications (RGB 레이저 가시화를 위한 축대칭 구면 f-${\theta}$ 렌즈 설계 및 프로젝션응용)

  • Lee, Y.M.;Choi, H.W.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • The design of a telecentric f-${\theta}$ lens with a field of view (FOV) $30^{\circ}$ and an effective focal length of 1000mm is presented. The optical stop is placed at the front plane and the design is based on a geometric ray tracing technique, and the designed system consists of a series of convex and concave lenses. The designed f-${\theta}$ lens showed a considerable reduction in weight with a simplified structure and resulted in a good performance in the designated FOV. Detail analysis of rays is also presented. 653nm (red laser), 586nm (green laser), and 468nm (blue laser) were simulated as a light source and image illuminating source. The developed optical design requires 7 pieces of lenses made of SF1, N-FK56, N-LAK33, and BK7 glass materials. With optimal parametric design, the effective focal length was calculated to be 974.839mm which is very close to the initial design target. For the manufacturing purpose, the dimensions of lens curvature and thickness were truncated with error ranging 0.1% to 3.2%. As a result, the overall error was calculated to be 3.2% which can be still tolerable for display, laser material, and machining processing.

  • PDF

Optimum Design and Characterization of F-theta lens by a 3D Printer(II) (초점보정 렌즈설계 및 3D 프린터 이용 가공 특성평가(II))

  • Yoon, Sung-Chul;Shin, Hyun Myung;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • The fabrication of a focal length-correcting lens called the F-theta lens was performed by a 3D printer. The fabricated lenses were characterized by transmittance and reflectance measurements. The optical properties of the lens, such as scattering or transmittance efficiency, were analyzed with respect to the wavelength (red, green, and blue) and the surface roughness of the lens. There was almost no shape aberration on the focus location of 0 degrees, but elliptical focus shapes were found at 1 and 2 degrees of the laser incidence angle. The developed process is expected to be used for the quick fabrication of lenses with low costs and quick turn-out. By improving the surface roughness during postprocessing, the optical properties are expected to be comparable to commercial lens quality.

Reverse Design of F-Theta Lens for Compact Laser Scanner (소형 2차원 레이저 스캐너용 F-theta 렌즈 역설계)

  • Choi, Hae Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.213-218
    • /
    • 2017
  • In this study, a reverse design of the F-theta lens was proposed for a 2D scanner in remote welding applications. The curvature and distance of the lens were set as variables, and the focal length of the lens was set as the marginal ray height. The ZEMAX commercial software was used to perform a simulation with unlimited iterations for the optimization process. The target value was optimized using the internal Merit function with the weight factors of focal length and spot diameter. The number of lenses was four, and the focal length obtained from the results was 135mm that is slightly less than that of the commercial lens, which is set with a focal length of 185 mm. The calculated spot diameters are $1.3{\mu}m$, $6.2{\mu}m$, and $16.1{\mu}m$ for $0^{\circ}$, $12.5^{\circ}$ and $23^{\circ}$ of incident laser beam, respectively. It is expected that an optimized lens design is possible by performing the reverse design of a lens by the ray tracing method.

Optical system design for laser scanning unit (Laser Scanning Unit용 광학계 설계)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 1999
  • Laser Scanning Unit (LSU), which is one of the core parts of laser printer, consists of LD Module, cylinder lens, polygon mirror and f$\theta$ lens. After making an initial design on each part, we optimized the one which satisfies the user specification. The optimized optical system has diffraction limited performance for the slit size of 2.7 mm$\times$1.6 mm, f$\theta$ characteristics less than 0.3% and field curvature less 1.2 mm. We also calcurate tolerance of each part based on RSS(Root Sum Square) method to manufacture LSU for mass production.

  • PDF

Collimation testing of a white light beam and measurement of chromatic aberration of a lens by using vernier Moire fringe patterns (버니어 무아레 무늬를 이용한 백색광의 시준 검사 및 렌즈의 색수차 측정)

  • 송종섭
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.232-238
    • /
    • 2000
  • The new collimation testing technique of a white light beam using vernier Moire fringes of two line or circular gratings with different pitches is presented. We can visually measure the defocusing ($\Deltaf$), the divergence angle ($\theta$), and the longitudinal chromatic aberration $(L_{ch})$ of a collimating lens by using the technique. For example, we obtained $\Deltaf$= 21.9 mm and $\theta=0.0038^{\circ}$ for a testing lens with the focallengthf = 120.0 mm and F-number of F/2.4. The longitudinal chromatic aberration $L_{ch}$ of another testing lens withf = 65.0 mm, F/1.6, and the Abbe number V = 64.1 for the incident wavelengths of $\lambda_1=480 nm and \lambda_2=640 nm$ is easily measured by same technique. It is found that the measured value $L_{ch}=1.59mm(\pm0.01mm)$ is well agreed with $L_{ch}=1.58mm(\pm0.01mm)$ obtained by the autofocus method.

  • PDF

Fisheye Lens for Image Processing Applications

  • Kweon, Gyeong-Il;Choi, Young-Ho;Laikin, Milton
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2008
  • We have developed a miniature fisheye lens with $190^{\circ}$ field of view operating simultaneously in the visible and the near infrared wavelengths. The modulation transfer function characteristic for the visible wavelength is sufficient for a mega-pixel-grade image sensor. The lens also has a fair resolution in the infrared wavelength region. The calibrated $f-{\theta}$ distortion is less than 5%, and the relative illumination is over 90%. In consequence, a sharp wide-angle image can be obtained which is uniform in brightness over the entire range of field angles. The real image heights for the visible and the near infrared wavelengths have been fitted to polynomial functions of incidence angle with sub-pixel accuracies. Combined with the near equidistance projection scheme of the lens, this lens can be advantageously employed in various image-processing applications requiring a wide-angle lens.