• Title/Summary/Keyword: F NMR

Search Result 314, Processing Time 0.023 seconds

Synthesis and Surface Characteristics of Novel Oligomeric Silane with Perfluoropolyether (과불소 폴리에테르 포함 새로운 실란형 올리고머의 합성과 표면 특성)

  • Park, Eun-Young;Lee, Sang-Goo;Ha, Jong-Wook;Park, In-Jun;Lee, Soo-Bok;Lee, Yong-Taek
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.397-402
    • /
    • 2008
  • Perfluoropolyether(PFPE) has been widely applied in industry because of its very excellent properties of very high contact angle and low surface energy, good lubricant property and antifouling property. But the difficulty to synthesize PFPE has limited the research on this field. In this study, the novel silicon-containing oligomer with perfluoropolyether moiety was synthesized, and the structure was characterized by $^{19}F$-NMR and $^1H$-NMR. The surface properties of contact angle, sliding angle, and soil release property were investigated. The results show that PFPE in this study can be utilized as an anti-smudge coating material because it shows lower sliding angle and better soil release property than commercial products.

Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins (불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-${\alpha}$,${\alpha}$,${\alpha}$-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa's equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, $\^$13/C NMR, and $\^$19/F NMR spectroscopy. The cure activation energy of FER/DDM system was 55.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.

Preparation and Characterization of Partially Fluorinated Poly (arylene ether sulfone)/PTFE Composite Membranes for Fuel Cell (연료전지용 부분불소계 Poly (arylene e ther sulfone)/PTFE 복합막의 제조 및 특성 분석)

  • Kim, Eun Hee;Chang, Bong-Jun;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • New composite membranes were manufactured by impregnating post-sulfonated poly(arylene ether sulfone)s containing perfluorocyclobutane (PFCB) groups into porous polytetrafluoroethylene (PTFE) films. Two kinds of post-sulfonated poly(arylene ether sulfone)s with two different monomer ratios (sulfonable biphenylene monomer : non-sulfonable sulfonyl monomer = 6 : 4, 4 : 6) were first prepared through three synthetic steps: synthesis of trifluorovinylether-terminated monomers, thermal cycloaddition polymerization and post-sulfonation using chlorosulfonic acid (CSA). The composite membranes were then prepared by adjusting the concentrations (5~20 wt%) of the resulting copolymers impregnated in the PTFE films. The water uptake, ion exchange capacity (IEC) and ion conductivity of the composite membranes were characterized and compared with their unreinforced dense membranes and Nafion. All the synthesized compounds, monomers and polymers were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR and the composite membranes were observed with scanning electron micrographs (SEM).

Identification of Novel Saringosteryl Glucoside in Phaseolus vulgaris Seed (강낭콩 미숙종자내 신규 Saringosteryl Glucoside의 동정)

  • 김성기
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.441-444
    • /
    • 1994
  • From immature seed of Phaseolus vulgaris L., a novel phytosteryl glucoside was isolated. Strong ion peaks at m/z 613 $[M+Na}^{+},\;696\;[M+Matrix]^{+}$ in positive F AB- MS and at m/z 589 $[M-1]^{-}$ in negative F AB- MS indicated the molecular weight of the compound is 590. Four hundred MHz $^IH-NMR$ analysis revealed that the compound canys a 24-hydroxy-24-vinyl-cholesterol (saringosterol) as an aglycone and a ${\beta}-D-glucopyranose$. Four hundred MHz $^IH-NMR$ analysis of the acetate derivate of the compound revealed that hydroxyls at C-1' in glucose moeity and at C-3 in aglycone have been condensed. Therefore, the phytosteryl glucoside was characterized to be $3-0-{\beta}-D-glucopyranosyl-24-hydroxy-24-vinyl-cholesterol$ (saringosteryl glucoside). This is the first demonstration for the presence of saringosterol in higher plants. Also this is the first identification of saringosteryl glucoside in natural materials.erials.

  • PDF

Phytotoxin Isolated from the Culture Broth of Chaetomium sp. (Chaetomium sp. 배양액에서 분리한 논피의 유근 저해물질)

  • Lim, Chi-Hwan;Kim, Mi-Young;Lee, Jae-Won;Yun, Bong-Sik;Baek, Seung-Hwa
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.316-320
    • /
    • 2007
  • Three phytotoxic compounds were isolated from the culture broth of Chaetomium sp. through silica gel column chromatography and HPLC (RP-18). Their chemical structures were elucidated as chaetoglobosin F, chaetoglobosin C and chaetoglobosin E on the basis of instrumental analyses such as $^1H-NMR,\;^{13}C-NMR$, and HMQC. They inhibited the root growth of barnyard grass with the $IC_{50}$ values of 66, 65, and $67{\mu}g/ml$, respectively.

Isolation and Identification of Sesquiterpene o-Naphthoquinones, Mansonones E, F and H, from the Root Bark of Ulmus davidiana Planch (당느릅나무로부터 Sesquiterpene o-Naphthoquinone류 화합물, Mansonone E, F 및 H의 분리와 구조결정)

  • Kim, Jong-Pyung;Kim, Won-Gon;Koshino, Hiroyuki;Park, Jong-Hee;Jung, Jin;Yoo, Ick-Dong
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.89-94
    • /
    • 1996
  • Three sesquiterpene ortho-naphthoquinones were isolated from the methanolic extract of root bark of Ulmus davidiana Planch whose stem and root bark have been used as an oriental medicine for the treatment of edema, mastitis, gastric cancer and inflammation. The structures of these compounds were established on the basis of spectral data obtained from UV-vis, IR, HR-EIMS and NMR spectrometry, including the pulse field gradient (PFG)-HMQC and HMBC techniques. Their structures were determined as 2,3-dihydro-3,6,9-trimethylnaphtho(1,8-b,c)pyran-7,8-dione, 3,6,9-trimethylnaphtho(1,8-b,c)pyran-7,8-dione and 2,3-dihydro-4-hedroxy-3,6, 9-trimethylnaphtho(1,8-b,c)pyran-7,8-dione, which were identified as mansonones E. F and H, respectively. These compounds have originally been isolated from Mansonia altissima Chev, but have never been isolated from Ulmus davidiana Planch. Especially, mansonone H was isolated for the first time from Ulmaceae. The mismatched carbon chemical shifts of mansonones E and F in the reported literature were corrected by the aid of the PFG-HMBC spectral data.

  • PDF

Backbone NMR Assignments of a Putative p53-binding Domain of the Mitochondrial Hsp40, Tid1

  • Jo, Ku-Sung;Sim, Dae-Won;Kim, Eun-Hee;Kang, Dong-Hoon;Ma, Yu-Bin;Kim, Ji-Hun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2018
  • Human Tid1, belonging to the family of the Hsp40/DnaJ, functions as a co-chaperone of cytosolic and mitochondrial Hsp70 proteins. In addition, the conserved J-domain and G/F-rich region of Tid1 has been suggested to interact with the p53 tumor suppressor protein, to translocate it to the mitochondria. Here, backbone NMR assignments were achieved for the putative p53-binding domain of Tid1. The obtained chemical shift information identified five ${\alpha}$-helices including four helices characteristic of J-domain, which are connected to a short ${\alpha}$-helix in the G/F-rich region via a flexible loop region. We expect that this structural information would contribute to our progressing studies to elucidate atomic structure and molecular interaction of the domain with p53.

Structure studies of Pulmonary Surfactant Protein B(SP-B(3,4)) by NMR Spectroscopy and Molecular Modeling

  • Kim, Yangmee;Dongha Baek;Kang, Joo-Hyun;Shin, Song-Yub;Hahm, Kyung-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • Synthetic pulmonary surfactants consisting of a mixture of phospholipids with synthetic peptides based on human surfactant-associated protein SP-B were prepared. These surfactants were analyzed f3r their secondary structures by circular dichroism (CD) spectroscopy and NMR spectroscopy. Two synthetic peptides (SP-B(3), SP-B(4)) combined with the phospholipid mixture displayed significant surfactant properties. The CD spectra showed that the u-helical propensities of the peptides in DPC micelles. In the NMR spectroscopy, the tertiary structures of SP-B(3) show that it has $\alpha$-helical structure from Gln5 to Arg13 in DPC micelle and SP-B(4) show that they have $\alpha$-helical structure from Gln5 to Leu12 in DPC micelle. Based on these structures, truncated peptides originated from SP-B protein, can be designed as effective synthetic surfactants for clinical use.

  • PDF

$^1H$ NMR Estimation of Multi-Redox potentials of Cytochrome $c_3$ from Desulfovibrio vulgaris Hildenborough

  • 박장수;강신원;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.331-336
    • /
    • 1995
  • The macroscopic and microscopic redox potentials of tetrahemoprotein, cytochrome c3 from Desulfovibrio vulgaris(Hildenborough) (DvH) were estimated from 1H NMR and differential pulse polarography(DPP). Five sets of NMR resonances were confirmed by a redox titration. They represent cytochrome c3 molecules in five macroscopic redox states. The electron transfer in cytochrome c3 involves four consecutive one-electron steps. The saturation transfer method was used to determine the chemical shifts of eight heme methyl resonances in five different oxidation states. Thirty two microscopic redox potentials were estimated. The results showed the presence of a strong positive interaction between a pair of particular hemes. Comparing the results with those of Desulfovibrio vulgaris Miyazaki F (DvMF), it was observed that the two proteins resemble each other in overall redox pattern, but there is small difference in the relative redox potentials of four hemes.

Synthesis and Micellar Characterization of CBABC Type PLGA-PEO-PPO-PEO-PLGA Pentablock Copolymers

  • Seong, Haseob;Cho, Eun-Bum;Oh, Joongseok;Chang, Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2342-2348
    • /
    • 2014
  • Poly(lactic-co-glycolic acid) (PLGA) were grafted to both ends of Pluronic$^{(R)}$ F68 ($(EO)_{75}(PO)_{30}(EO)_{75}$) triblock copolymer to produce poly{(lactic acid)$_m$-co-(glycolic acid)$_n$}-b-poly(ethylene oxide)$_{75}$-b-poly(propylene oxide)$_{30}$-b-poly(ethylene oxide)$_{75}$-b-poly{(lactic acid)$_m$-co-(glycolic acid)$_n$} (PLGA-F68-PLGA) pentablock copolymers. Molecular weights of PLGA blocks were controlled and five kinds of pentablock copolymers with different PLGA block lengths were synthesized using in-situ ring-opening polymerization of D,L-lactide and glycolide with tin(II) 2-ethylhexanoate ($Sn(Oct)_2$) catalyst. PLGA-F68-PLGA pentablock copolymers were characterized by $^1H$- and $^{13}C$-NMR, GPC, and TGA. The numbers (2m, 2n) of repeating units for lactic acid and glycolic acid inside PLGA segments were obtained as (48, 17), (90, 23), (125, 40), (180, 59), and (246, 64), with $^1H$-NMR measurement. From NMR data, the resultant molecular weights were determined in the range of 12,700-29,700, which were similar to those obtained from GPC. Polydispersity index was increased in the range of 1.32-1.91 as the content of PLGA blocks increased. TG and DTG thermograms showed discrete degradation traces for PLGA and F68 blocks, which indicate the weight fractions of PLGA blocks in pentablock copolymers can be calculated by TG profile and it is possible to remove PLGA block selectively. Hydrodynamic radius and radius of gyration of pentablock copolymer micelle were obtained in the range of 46-68 nm and 31-49 nm, respectively, in very dilute (i.e. 0.005 wt %) aqueous solution of THF:$H_2O$ = 10:90 by volume at $25^{\circ}C$.