• Title/Summary/Keyword: Eye shielding

Search Result 27, Processing Time 0.03 seconds

Effect of Reducing Scattering Radiation Exposure of Medical Staffs When Additional Shielding is Used in Interventional Radiology (중재적 방사선시술에서 부가 차폐체 사용 시 종사자의 산란선 피폭 감소효과)

  • Kim, Min-Jun;Baek, Kang-Nam;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.629-633
    • /
    • 2021
  • This article is designed to look into the radiation exposure dose to each body part and the shielding effect for workers using an additional shielding to reduce their radiation exposured by scattering radiation which is generated in a space between the operating table and lead curtain during interventional radiology(IR) procedures. After placing a human phantom on the table of SIEMENS' angiography machine, the following measurements were taken, depending on the presence of an additional shield of lead equivalent of 0.25 mmPb, manufactured for this purpose: dose to gonad, dose to an area where the personal dosimeter is placed, and dose to an area of eye lens is located. An ion chamber(chamber volume 1,800 cc) was utilized to measure scattering radiation. The two imaging tests were carried out as follows: fluoroscopy of the abdomen (66 kV, 100 mA, 60 seconds) and of the head (70 kV, 65 mA, 60 seconds); and digital subtraction angiography(DSA) of the abdomen (67 kV, 264 mA, 20 seconds) and of the head (79 kV, 300 mA, 20 seconds). In all the experiments, the shielding efficiency of the gonad position was the largest at 59.8%. In case an additional shielding was used as protection against scattering radiation that came through the operating table and the lead curtain during an IR, the radiation shielding efficiency was estimated to be up to 59.8%, leading to a conclusion that its presence may effectively reduce the radiation exposure dose of medical staffs.

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

Lens Dose Reduction Methods and Image Quality in Orbital Computed Tomography Scan (안와 전산화단층촬영검사 시 수정체 선량감소 방법과 영상 평가)

  • Moon, Se-Young;Hong, Sang-Woo;Seo, Ji-Sook;Kim, Yeong-Beom;Kwak, Wan-Sin;Lee, Seong-Yeong;Kim, Jung-Soo
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.343-351
    • /
    • 2020
  • This study analyzed dose reduction and quality of images through dose reduction tools and shielding board to protect sensitive eye lens in radiation during orbit CT examinations for clinical data use. During CT scans of the phantom, surface dose (CT scanner dosimetry phantom, ion chamber-3 times) and quality of image (radiosurgery head phantom, visual assessment-2 times, HU standard deviation) were evaluated using X-care which is dose reduction tools and bismuth shielding board. The results of experiments of eight conditions showed a relatively reduced dose in all other conditions compared to when no conditions were set. In particular, the area corresponding to the ophthalmic part reduced the surface dose by up to 45.7 %. The visual evaluation of images by specialists and the quality evaluation of images analyzed by HU standard deviation were clinically closest to the use of X-care and shielding board (1 cm in height). Therefore, it is believed that the use of shielding board in a suitable location with dose reduction tools while investigating the optimal radiation dose will reduce the exposure dose of sensitive lens at radiation while maintaining the quality of the images with high diagnostic value.

Evaluations of the Space Dose and Dose Reductions in Patients and Practitioners by Using the C-arm X-ray Tube Shielding Devices Developed in Our Laboratory

  • Kim, Jae Seok;Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Jung, Hai Jo;Hoe, Seong Wook;Son, Jin Hyun;Kang, Byeong Sam
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • The present study used a digital angiography x-ray device to measure the space dose and exposure dose of patients and practitioners using x-ray tube shielding devices developed in our laboratory. The intent of the study was to reduce the space dose within the test room, and to reduce the exposure dose of patients and practitioners. The patient and practitioner exposure doses were measured in five configurations in a human body model. The glass dosimeter was placed on the eye lenses, thyroid glands, left shoulder, right shoulder, and gonads. The beam was collimated at full size and at a 48% reduction for a comparative analysis of the measurements. The space dose was measured with an ion chamber at distances of 50 cm, 100 cm, and 150 cm from the x-ray tube under the following conditions: no shielding device; a shielding device made of 3-mm-thick lead (Pb) [Pb 3 mm shield], and a shielding device made of 3-mm-thick Pb (outside) and 3-mm-thick aluminum (Al) (inside) [Pb 3 mm+Al 3 mm shield]. The absorbed dose was the lowest when the 3-mm-thick Pb+3-mm-thick Al shield was used. For measurements made with collimated beams with a 48% reduction, the dose was the lowest at $154{\mu}Gy$ when the 3-mm-thick Pb+3-mm-thick Al shield was used, and was $9{\mu}Gy$ lower than the measurements made with no shielding device. If the space dose can be reduced by 20% in all situations where the C-arm is employed by using the x-ray tube shielding devices developed in our laboratory, this is expected to play an important role in reducing the annual exposure dose for patients, practitioners, and assistants.

Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology (인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

Development and Radiation Shield effects of Dose Reduction Fiber for Scatter ray in CT Exams (피폭선량저감 섬유의 개발과 CT 검사시 산란선 차폐 효과)

  • Kim, Sunghwan;Kim, Yong Jin;Kwak, Jong Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1871-1876
    • /
    • 2013
  • In this study, we developed and characterized the shielding properties of dose reduction fiber (DRF, Buffalo Co.) sheet during brain and chest CT examinations. The DRF sheet was composed of $1{\sim}500{\mu}m$ oxide Bismuth ($Bi_2O_3$) and 5 ~ 50 nm nano-barium sulfate ($BaSO_4$). Phantom and clinical studies were performed for characterization of the DRF shielding properties. In clinical study, we measured doses of eye, chest, abdomen and reproductive system of 60 patients in 3 hospitals during brain and chest CT examinations. We could determined the shielding effect of the DRF by comparing the doses when we used the DRF sheet or not. When we used the sheet during CT examination, the scattered dose were reduced about 20~50%. So, we suggest that the fiber should be used in radiological examinations for reducing patients doses.

Efficacy of Lens Shielding Device to Prevent Cataract with Radiotherapy for Orbit or Ocular Adnexal Tumor (안와 및 안부속기 종양의 방사선치료에서 백내장의 예방을 위한 렌즈보호 장치의 효용성)

  • Cho, Jung-Keun;Cho, Hyun-Sang;Han, Tae-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.139-144
    • /
    • 2007
  • Radiotherapy which is the most effective for orbit lymphoma has been used increasingly due to the increase of orbit or ocular adnexal tumor patients. Curative effects and convalescence have been being more satisfied thanks to remarkable development of cancer chemotherapy and medical treatments, but side effects such as cataract, dry eye and retinopathy still break out. Thus, in this study, a Lens Shielding Device (LSD hereafter) was designed to prevent occurring of cataract due to radiation therapy for orbit lymphoma and its efficacy through dosimetry were evaluated. And in this paper, its manufacturing process was also explained. LSD is composed of a cover body covering the lens and a side fixing part supporting the cover body. To measure radiation, the patient therapy conditions were simulated and the measurement of the radiation was conducted with Thermo Luminescence Detector (TLD) and Markus chamber. The average TLD value was 5.7% and the TLD value and Markus chamber value were acquired as 4.2% and 5.1% respectively at 6 mm depth where zero lens center was located. Only 1.5Gy ($300Gy{\times}\;5%$) or 5% of total 30Gy with 9 MeV electron beam is estimated to affect on patient's lens. That is smaller dose than the threshold value of cataract (2GY) or the value (5Gy) that was reported to cause cataract in clinical conditions. Thus, these findings suggest that LSD be very useful for prevention of cataract during radiotherapy for malignant lymphoma of orbit and ocular adnexa. Furthermore, it might be possible to reduce patient's discomfort caused by alien substances and to make it easier to fix the device with customized manufacturing manners.

The Fabrication of Internal Shielding using Provil and Cerrobend (Provil과 cerrobend을 이용한 electron 차폐물 제작)

  • Kim, Jong-Wa;Lee, Kang-Hyun;Son, Jeong-Hye
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.37-39
    • /
    • 1996
  • The skin cancer is a highly curable disease which frequently occurs in the head and neck region exposed to the sun. When the eyelid is treated usually eye shield made of lead is used to protect the eyeball as a internal shield. For the same reason on internal shield should be used when the nose is treated when electron to protect the nasal mucosa. Our hospital made an internal shield for the treatment of the skin cancer on the nose using provil and cerrobend. The characteristics of the internal shield were examined.

  • PDF

UV/IR flame detector using Microprocessor (마이크로프로세서를 사용한 UV/IR 불곶 감지기)

  • 박성진;임병현;임종연;김명원;윤길호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.215-218
    • /
    • 2001
  • A flame detector responds either to radiant energy visible to the human eye or outside the range of human vision. Such a detector is sensitive to glowing embers, coals, or flames which radiate energy of sufficient intensity and spectral quality to actuate the alarm. An infra-red detectors can respond to the total IR component of the flame alone or in combination with flame flicker in the frequency range of 5 to 30 Hz. A major problem in the use of infrared detectors receiving total IR radiation is the possible interference of solar radiation in the infrared region. When detectors are located in places shielded from the sun, such as vaults. filtering or shielding the unit from the sun's rays is unnecessary. In this study, we proposed method for redue a false alarm with using filtering & sensor technology for distinguish of causes of raise a false alarm and pure flame.

  • PDF

A Study on the Difference of Scattered Rays with or Without Gonadal Shielding During Chest Computed Tomography (흉부 전산화 단층 촬영 검사 시 발생하는 생식선 차폐 유무에 따른 산란 선량 차이에 관한 연구)

  • Kwak, Jong Hyeok;Kim, Gyeong Rip;Sung, Hyun Chul;Kim, Seung Won;Song, Geun Sung;Choi, Min Gyeong;Lee, Sang Weon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • This study is a study on the difference in dose according to the presence or absence of gonadal shielding of scattered rays generated during chest computed tomography examination, and the scattered dose of the examination site was measured by placing the RadEye G-10 device in the center of the phantom. When the gonads are not shielded, the scattering lines of the whole, both sides, posterior and gonads are measured and Xenolite nolead Apron (0.35 mm PB), Xenolite nolead Apron (front 0.35 mm PB Mix back 0.25 mm PB, Skirt overlap), Half Apron After shielding with (0.5 mm PB), each scattered dose was measured. During chest computed tomography, the scattered dose of the test site was measured at 272 μSv, and when not shielded with Apron, the average total was 43 μSv, left 81 μSv, right part 82 μSv, posterior part 38.8 μSv, and Gonad part 16 μSv. Became. Xenolite nolead Apron shielded only the upper part and measured all 11.2 μSv, left part 43.1 μSv, right part 45.3 μSv, posterior part 12 μSv and Gonad part 5.2 μSv. Xenolite nolead Apron (Skirt overlap) covered the Pelvis area 360° and the dose was measured to be 5.6 μSv in the whole, 22.4 μSv in the left, 15.7 μSv in the right side, 6 μSv in the posterior part, and 3.2 μSv in the Gonad part. Xenolite nolead Apron (Skirt overlap) covered the Pelvis area 360° and the dose was measured to be 5.6 μSv in the whole, 22.4 μSv in the left, 15.7 μSv in the right side, 6 μSv in the posterior part, and 3.2 μSv in the Gonad part. When measuring only the upper part with Half Apron, the total measurement was 10.7 μSv, the left part 42.6 μSv, the right part 40.6 μSv, the posterior part 11.3 μSv, and the Gonad part 4.7 μSv. The method of 360° shielding of the pelvic area showed a dose reduction of more than 80%, and a dose reduction effect of more than 70% was shown when all shielding was performed. In all computerized tomography examinations, research to reduce the exposure dose and various shielding devices were used. It is believed that continuous research on the technique is needed.