• Title/Summary/Keyword: Eye fundus camera

Search Result 6, Processing Time 0.022 seconds

Development of Retina Healthcare Service System Using Smart Phone

  • Park, Gi Hun;Han, Ju Hyuck;Kim, Yong Suk
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.227-237
    • /
    • 2019
  • In this paper, we have developed a Retina Healthcare Service System through which the patient himself/herself can manage his/her retina health. In the case of conventional portable ophthalmic cameras, patients cannot check their eye health on their own because most of them are used by doctor in environments where ophthalmography cannot be performed properly. This system consists of web, app and camera modules, and when a patient mounts a camera module for fundus photography on his / her smart phone and then photographs his / her fundus through the app, the image is transmitted to a server, and the transmitted image reads the fundus the patient's fundus image status in the fundus image reading model learned using deep learning. When the doctor expresses his/her opinions about the patient 's eye condition based on the reading result and the fundus photograph, the patient can check through the app and judge whether to receive ophthalmologic treatment.

Optical Design of a Snapshot Nonmydriatic Fundus-imaging Spectrometer Based on the Eye Model

  • Zhao, Xuehui;Chang, Jun;Zhang, Wenchao;Wang, Dajiang;Chen, Weilin;Cao, Jiajing
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • Fundus images can reflect ocular diseases and systemic diseases such as glaucoma, diabetes mellitus, and hypertension. Thus, research on fundus-detection equipment is of great importance. The fundus camera has been widely used as a kind of noninvasive detection equipment. Most existing devices can only obtain two-dimensional (2D) retinal-image information, yet the fundus of the human eye also has spectral characteristics. The fundus has many pigments, and their different distributions in the eye lead to dissimilar tissue penetration for light waves, which can reflect the corresponding fundus structure. To obtain more abundant information and improve the detection level of equipment, a snapshot nonmydriatic fundus imaging spectral system, including fundus-imaging spectrometer and illumination system, is studied in this paper. The system uses a microlens array to realize snapshot technology; information can be obtained from only a single exposure. The system does not need to dilate the pupil. Hence, the operation is simple, which reduces its influence on the detected object. The system works in the visible and near-infrared bands (550-800 nm), with a volume less than 400 mm × 120 mm × 75 mm and a spectral resolution better than 6 nm.

Smartphone Fundus Photography in an Infant with Abusive Head Trauma (학대뇌손상 영아에서 스마트폰으로 촬영한 안저소견)

  • Kim, Yong Hyun;Choi, Shin Young;Lee, Ji Sook;Yoon, Soo Han;Chung, Seung Ah
    • Journal of The Korean Ophthalmological Society
    • /
    • v.58 no.11
    • /
    • pp.1313-1316
    • /
    • 2017
  • Purpose: To report fundus photography using a smartphone in an infant with abusive head trauma. Case summary: An 8-month-old male infant presented to the emergency room with decreased consciousness and epileptic seizures that the parents attributed to a fall from a chair. He had no external wounds or fractures to the skull or elsewhere. However, computerized tomography of the brain revealed an acute subdural hematoma in the right cranial convexity and diffuse cerebral edema, leading to a midline shift to the left and effacement of the right lateral ventricle and basal cistern. The attending neurosurgeon promptly administered a decompressive craniectomy. Immediately after the emergency surgery, a fundus examination revealed numerous multi-layered retinal hemorrhages in the posterior pole extending to the periphery in each eye. He also had white retinal ridges with cherry hemorrhages in both eyes. We acquired retinal photographs using the native camera of a smartphone in video mode. The photographer held the smartphone with one hand, facing the patient's eye at 15-20 cm, and held a 20 diopter condensing lens at 5 cm from the eye in the other hand. Our documentation using a smartphone led to a diagnosis of abusive head trauma and to obtain the criminal's confession, because the findings were specific for repetitive acceleration-deceleration forces to an infant's eye with a strong vitreoretinal attachment. Conclusions: This ophthalmic finding had a key role in the diagnosis of abusive head trauma. This case presented the diagnostic use of a smartphone for fundus photography in this important medicolegal case.

A Study of Optical System Design for a Retinal Camera (망막 카메라용 광학계 설계)

  • Hong, Kyung-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • We need a good image of the retina of the human eye in order to inspect or cure it. In this work, an optical system design for a retinal camera is studied and the finite schematic eye model made by Sang Gee Kim and Sung Chan Park is used. The optical system is composed of four lens groups. The rays of the entire object field are collected on the center by the 1st group and the objective is imaged by all the other groups. The image is detected by the CCD array and displayed by a monitor The 1st lens group is employed singlet and other groups are employed triplets. Ray aberrations, spot diagrams, diffraction line spread functions and MTFs are calculated for optical performance assessment. This design may be very useful for the development of a retinal camera with high performance.

Optics of Refractometers for Refractive Power Measurement of the Human Eye

  • Ko, Dong-Seob;Lee, Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.145-156
    • /
    • 2006
  • In the field of ophthalmology, many diagnostic instruments based on optical technology have been developed, such as refractometer, keratometer, corneal mapper, tonometer, fundus camera, slit lamp, laser scan ophthalmoscope and optical coherence tomography. Among them, the refractometer that is used for measuring the refractive power of the human eye has the long research history and various types have been developed. However the efforts to realize more accurate and precise measurement are still in progress. The wavefront analyzer commercialized in recent years is an excellent outcome of such efforts. In this paper, a brief account of the developmental history of various refractometers including the wavefront analyzer is summarized, and the underlying measurement principle is introduced in the view of optics. Finally, the technical issues that should be solved for getting better performance are discussed.

Analysis of Living Lab Cases in R&D Initiatives for Solving Societal Problems and Challenges (사회문제 해결형 기술개발사업에서의 리빙랩 적용 사례 분석)

  • Seong, Ji Eun;Han, Kyu Young;Jeong, Seo Hwa
    • Journal of Science and Technology Studies
    • /
    • v.18 no.1
    • /
    • pp.177-217
    • /
    • 2018
  • This study examines the case of living lab applied in the R&D initiatives for solving societal problems and challenges. It discusses how to use the living lab in national R&D projects. The analyzed cases are 'Develop portable fundus camera for eye disease screening test to resolve health inequalities' and 'Auto-sensing integrated system development in rural pedestrian crosswalk'. As a result of the analysis, both cases were designed as a user participatory R&D structure by utilizing living lab. In other words, living lab has operated as a system that evolves technology-products-services into an infrastructure. It can realize final demand specification, product, service improvement and demonstration through continuous interaction of end users. As a result of the case analysis, the following policy tasks can be derived. First, living lab is a new concept and it is in the early stage of implementation in Korea. Therefore, it is necessary to monitor and evaluate living lab experiments and build suitable models for Korean society by sharing cases and achievements. Second, the strategic niche management are necessary for the introduction of living lab. Third, living lab can be used as a tool to transform the existing technology acquisition centered innovation policy to the policy for customer needs and problem solving. Fourth, there is a need for flexibility and adaptability in strategy and system to correct errors that appear in the living lab processes.