• Title/Summary/Keyword: Eye Dose

Search Result 162, Processing Time 0.019 seconds

A Study on the Secondary Carcinogenesis Rate of Vestibular Schwannoma Disease using Glass Dosimeter (유리선량계를 이용한 청신경초종 질환의 2차 발암률에 관한 연구)

  • Joo-Ah Lee;Gi-Hong Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.243-248
    • /
    • 2023
  • This study aims to analyze the secondary carcinogenesis rate caused by exposure of organs at risk of damage using a glass dosimeter during radiosurgery in vestibular schwannoma disease. Using a pediatric phantom of human tissue equivalent material, the volume of the tumor was set to a total of three volumes: 0.506 cm3, 1.008 cm3, and 2.032 cm3, and a radiosurgery plan was established with an average dose of 18.4 ± 3.4 Gy. After mounting the human body phantom on the table of surgical equipment, glass dosimeters were placed on the right eye, left eye, thyroid gland, thymus, right lung, and left lung to measure the exposure dose, respectively. In this study, the incidence of secondary cancer due to exposure to damaged organs during gamma knife radiosurgery in vestibular schwannoma disease with the largest tumor volume of 2.032 cm3 was measured with a glass dosimeter. This study studies the risk of secondary radiation exposure dose that can occur during stereotactic radiosurgery, and it is considered that it will be used as basic data in the field of radiation damage related to the stochastic effect of radiation in the future.

Evaluation of DVH and NTCP in Hepatoma for 3D Conformal Radiation Therapy (3차원 입체조형치료에 대한 간암의 선량분포와 정상조직손상확률의 평가)

  • Chung, Kap-Soo;Yang, Han-Joon;Ko, Shin-Gwan
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.79-82
    • /
    • 1997
  • Image-based three dimensional radiation treatment planning(3D RTP) has a potential of generating superior treatment plans. Advances in computer technology and software developments quickly make 3D RTP a feasible choice for routine clinical use. However, it has become clear that an evaluation of a 3D plan is more difficult than a 2D plan. A number of tools have been developed to facilitate the evaluation of 3D RTP both qualitatively and quantitatively. For example, beam's eye view(BEV) is one of the most powerful and time-saving method as a qualitative tools. Dose-volume histogram(DVH) has been proven to be one of the most valuable methods for a quantitative tools. But it has a limitation to evaluate several different plans for biological effects of the tissue and critical organ. Therefore, there is a strong interest in developing quantitative models which would predict the likely biological response of irradiated organs and tissues, such as tumor control probability(TCP) and normal tissue complication probability(NTCP). DVH and NTCP of hepatoma were evaluated for three dimensional conformal radiotherapy(3D CRT). Also, 3D RTP was analysed as a dose optimization based on beam arrangement and beam modulation.

  • PDF

Effects of Intravitreal Centamicin Injection on the Clinically Normal Canine Eye (개에서 초자체내 겐타마이신 주사의 영향)

  • 강선미;이충호;김완희;우흥명;권오경
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.333-336
    • /
    • 2002
  • This experiment was carried out to investigate the optimal dose of intravitreal gentamicin that decreases intraocular pressure effectively and minimizes complications in dog. After inhalation anesthesia, gentamicin was injected intravitreally into the left eyes at doses of 10, 15 and 20 mg with 1 mg dexamethasone, respectively. Sterilized isotonic saline and dexamethasone mixture into the right eyes for control. Six dogs were used in each group. Intraocular pressures were measured using applanation tonometer(Mentore, Tono-Pen) until 5 months after injection of gentamicin. Ocular examinations were performed using direct ophthalmoscopy. The ocular volumes of both eyes were measured. Intraocular pressures of eyes injected with 10. 15 and 20 mg of gentamicin were decreased significantly compared with control eyes. Severe corneal opacity and neovascularization occurred in 20 mg treated group. Intraocular hemorrhage was observed in 3 dogs of 20 mg treated group. Ocular volume was significantly decreased(p <0.05) in 20 mg treated group, compared with 10 and 15 mg treated group. It is considered that intravitreal gentamicin injection at dose of 10 mg or 15 mg decrease intraocular pressure effectively and minimize complications such as corneal opacity, hyphema and phthisis bulbus.

Dose Assessment of Orbital Adnexa in Electron Beam Therapy for Orbital Lymphoma (안와림프종의 전자선 치료 시 안구 부속기관에 대한 선량평가)

  • Dong Hwan Kim;Yong In Cho
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2024
  • Radiation side effects and complications on the ocular adnexa during electron beam therapy for orbital lymphoma can increase the incidence of posterior subcapsular cataracts. This study simulated a medical linear accelerator and a mathematical model of the eye using monte carlo simulations to evaluate the dose to the ocular adnexa and compare the shielding effectiveness on different parts of the ocular adnexa based on lens shield thickness. The dose assessment results of the ocular adnexa showed that the lens's sensitive area had the highest absorbed dose distribution when no shield was used, followed by the lens's non-sensitive area, the anterior chamber, vitreous humor, cornea, and eyelid in descending order. With the use of a shield, a 2 mm thick shield demonstrated a dose reduction effect of over 90% in the lens's sensitive area, over 83% in the non-sensitive area and anterior chamber, and a dose reduction effect of 30 to 62% in the vitreous body, cornea, and eyelid. For dose reduction in the lens's sensitive area during electron beam therapy for orbital lymphoma, it is necessary to use a shield of at least 2 mm thickness. Additionally, shielding strategies considering the thickness and area of the shield for other ocular adnexa besides the lens are required.

The Plan of Dose Reduction by Measuring and Evaluating Occupationally Exposed Dose in vivo Tests of Nuclear Medicine (핵의학 체내검사 업무 단계 별 피폭선량 측정 및 분석을 통한 피폭선량 감소 방안)

  • Kil, Sang-Hyeong;Lim, Yeong-Hyeon;Park, Kwang-Youl;Jo, Kyung-Nam;Kim, Jung-Hun;Oh, Ji-Eun;Lee, Sang-Hyup;Lee, Su-Jung;Jun, Ji-Tak;Jung, Eui-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2010
  • Purpose: It is to find the way to minimize occupationally exposed dose for workers in vivo tests in each working stage within the range of the working environment which does not ruin the examination and the performance efficiency. Materials and Methods: The process of the nuclear tests in vivo using a radioactive isotope consists of radioisotope distribution, a radioisotope injection ($^{99m}Tc$, $^{18}F$-FDG), and scanning and guiding patients. Using a measuring instrument of RadEye-G10 gamma survey meter (Thermo SCIENTIFIC), the exposure doses in each working stage are measured and evaluated. Before the radioisotope injection the patients are explained about the examination and educated about matters that require attention. It is to reduce the meeting time with the patients. In addition, workers are also educated about the outside exposure and have to put on the protected devices. When the radioisotope is injected to the patients the exposure doses are measured due to whether they are in the protected devices or not. It is also measured due to whether there are the explanation about the examination and the education about matters that require attention or not. The total exposure dose is visualized into the graph in using Microsoft office excel 2007. The difference of this doses are analyzed by wilcoxon signed ranks test in using SPSS (statistical package for the social science) program 12.0. In this case of p<0.01, this study is reliable in the statistics. Results: It was reliable in the statistics that the exposure dose of injecting $^{99m}Tc$-DPD 20 mCi in wearing the protected devices showed 88% smaller than the dose of injecting it without the protected devices. However, it was not reliable in the statistics that the exposure dose of injecting $^{18}F$-FDG 10 mCi with wearing protected devices had 26% decrease than without them. Training before injecting $^{99m}Tc$-DPD 20 mCi to patient made the exposure dose drop to 63% comparing with training after the injection. The dose of training before injecting $^{18}F$-FDG 10 mCi had 52% less then the training after the injection. Both of them were reliable in the statistics. Conclusion: In the examination of using the radioisotope $^{99m}Tc$, wearing the protected devices are more effective to reduce the exposure dose than without wearing them. In the case of using $^{18}F$-FDG, reducing meeting time with patients is more effective to drop the exposure dose. Therefore if we try to protect workers from radioactivity according to each radioisotope characteristic it could be more effective and active radiation shield from radioactivity.

  • PDF

Dosimetric characteristics of an independent collimator system using measurements performed quarter fields. (Tungsten eyeball shield block의 임상적용에 관한 고찰)

  • Jeong, Deok-Yang;Lee, Byoung-Koo;Hwang, Woong-Koo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.89-94
    • /
    • 2002
  • During radiation therapy with electron beam to eyelid, we must keep the minimal dose on eyeball as possible. especially in the treatment of Sebaceous gland carcinoma, Squamouse cell ca., and basal cell ca. of eyelid and low grade MALToma etc. But if radiation field covered the upper & lower eyelid, it makes a cataract on lens of treated eye, in late complications. Now we reports the advantages of Tungsten eyeball shielding block compare to previously used lead block. with BOLX-I material, we made a eyeball model and measured the absorbed dose of 6MeV & 9MeV electron hem at 6 point of eyeball model with TLD chip. And compare the absorbed dose to previously lead block and other types of Tungsten eyeball shielding block.

  • PDF

Antimicrobial Activity and Safety Test of Natural extract including Phellodendro namurense, Eucommia ulmides Oliv extracts (황벽나무, 두충나무 추출물 등을 포함한 천연 추출물의 항균력 및 안전성)

  • Noh, Daeyoung;Joe, Suehyeon;Yang, Hyunguk;Han, Donggyun;Kim, Jinhong;Kim, Donguk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.762-766
    • /
    • 2016
  • In this study, natural extract including Phellodendro namurense, Eucommia ulmides Oliv and Prunus padus were tested for antimicrobial activity and safety. Antimicrobial activity was measured by using opportunistic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. As safety test, cell viability test, single dose oral toxicity test, single dose inhalation toxicity test, repeat dose inhalation toxicity test and eye irritation test were done. From antimicrobial test, natural extract showed execellent antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Escherichia coli. From 5 kinds of safety tests, toxicity was not observed. From experimental results, natural extract including Phellodendro namurense, Eucommia ulmides Oliv and Prunus padus showed superb safety and antimicrobial effect.

Evaluation of the Usefulness of 3D Printed Shielding Materials Using Monte Carlo Simulation during Mammography (유방 X선 검사 시 몬테카를로 시뮬레이션을 이용한 3D 프린팅 차폐재료의 효용성 평가)

  • Cho, Yong In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.295-301
    • /
    • 2020
  • Radiation exposure exposed during mammography, which is performed for early examination of breast cancer, has also been suggested as a cause of carcinogenesis in the past, and scattered rays generated during examination may cause unnecessary radiation exposure to surrounding organs. In this study, the Monte Carlo simulation was used to evaluate the human organ doses exposed during conventional mammography, and to estimate the dose reduction effect for each organ when using 3D printing materials for radiation protection by scattered rays. As a result of organ dose evaluation, the breast on the opposite side of the examination was about 22.0% of the breast on the test side and about 58.6% on the eye, which was highly influenced by the scattering-ray. When using the 3D printing shield to protect it, the breast on the opposite side of the test showed an effective dose reduction effect at a thickness of 1 mm.

Development of 3-D Radiosurgery Planning System Using IBM Personal Computer (IBM Personal Computer를 이용한 3차원적 뇌정위 방사선 수술계획 시스템의 개발)

  • Suh Tae-Suk;Suh Doug-Young;Park Charn Il;Ha Sung Whan;Kang Wee Saing;Park Sung Hun;Yoon Sei Chul
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.167-174
    • /
    • 1993
  • Recently, stereotactic radiosurgery plan is required with the information of 3-D image and dose distribution. A project has been doing if developing LINAC based stereotactic radiosurgery since April 1991. The purpose of this research is to develop 3-D radiosurgery planning system using personal computer. The procedure of this research is based on two steps. The first step is to develop 3-D localization system, which input the image information of the patient, coordinate transformation, the position and shape of target, and patient contour into computer system using CT image and stereotactic frame. The second step is to develop 3-D dose planning system, which compute dose distribution on image plane, display on high resolution monitor both isodose distribution and patient image simultaneously and develop menu-driven planning system. This prototype of radiosurgery planning system was applied recently for several clinical cases. It was shown that our planning system is fast, accurate and efficient while making it possible to handle various kinds of image modalities such as angiography, CT and MRI. It makes it possible to develop general 3-D planning system using beam's eye view or CT simulation in radiation therapy in future.

  • PDF

Toxicity Assessment of Abeliophyllum distichum Nakai Ethanol Extract Orally Administered to Sprague-Dawley Rats for Two Consecutive Weeks (Sprague-Dawley 랫드를 이용한 미선나무주정추출물의 2주 반복 경구투여 독성평가)

  • Kwon, Soon Bok
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.6
    • /
    • pp.801-809
    • /
    • 2019
  • Abeliophyllum distichum Nakai is a deciduous shrub of a flowering plant in Oleaceae. It is an important plant resource and consists of only one species in the entire world. A. distichum Nakai is well known an edible, medicinal herb in its habitat districts, but the toxicological evaluation for the safe use of its extract is still insufficient. The study characterized the toxicity of an Abeliophyllum distichum Nakai ethanol extract in Sprague-Dawley (SD) rats and determined the safe dosage levels in a 13 weeks toxicity study. Abeliophyllum distichum Nakai ethanol extract was orally administered once daily for 2 weeks at 0, 500, 1,000 and 2,000 mg/kg/day to male and female SD rats. while recording the clinical signs of toxicity, body weight, food intake/consumption, eye test and urine analysis. Only the total protein frequency in the urine of male SD rats (p<0.05), the right ovary of the 500 mg/kg group (p<0.01) and the right adrenal gland of the 1,000 mg/kg group (p<0.05) in the female rats showed statistically significant changes. But no toxic effects were noted from repeated-dose administration of the Abeliophyllum distichum Nakai ethanol extract in the SD rats during the observation period. The post-mortem examinations showed no test substance-mediated changes. The hematological analysis and clinical blood chemistry data demonstrated no toxic effects from repeated-dose administration of Abeliophyllum distichum Nakai ethanol extract in the SD rats during the observation period. Based on these results, this data suggests that a dose of 1,000 mg/kg/day is a highest treatment to administer when conducting a further 13 weeks toxicity study.