• Title/Summary/Keyword: Extrusion process

Search Result 826, Processing Time 0.026 seconds

Manufacturing Powder Extrusion Die and Experiment for Fabrication of Miniature Helical-Gears (소형 헬리컬 기어 제조를 위한 분말 압출 금형 제작 및 실험)

  • Hwang, D.W.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.283-289
    • /
    • 2010
  • Extrusion process in the bulk material for fabrication of miniature helical gears has problems such as a high forming load and short tool life because the cross-section is complex and asymmetry. To overcome these problems, in this study, miniature helical gears were fabricated by Zn-22Al powder hot extrusion. The included die angle for minimum extrusion load and improving die filling was determined by FE-simulation. The Zn-22Al spheroidal powder produced by gasatomization were compacted and sintered for extrusion experiment. The dimension of helical-gear is 0.3mm in module, 3.35mm in pitch diameter, $15^{\circ}$ in helix angle and the number of teeth is 12. All of the extrusion experiments were performed with internal helical gear die which was machined by precision electric discharge machining using the electrode. The experiment was conducted at $190^{\circ}C$ to $310^{\circ}C$ to obtain extrusive and mechanical properties. The extruded helical gears were analyzed through extrusion load, Vickers hardness and SEM images for each extrusion temperature. The powder hot extrusion process was successfully applied to fabricate a miniature helical gear.

A Study On the $Conform^{TM}$ Process of Al 1100 Alloy (Al 1100 합금의 $Conform^{TM}$ 공정에 관한 연구)

  • Kim, S.H.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.329-332
    • /
    • 2006
  • $Conform^{TM}$, a continuous extrusion forming process can produce a variety of very long extruded products such as aluminum alloyed wires, strips and profiles, hollow sectioned tubes, coated wires used in the current forming industry. This process has some advantages like as superiority of pre-heating free, availability of high extrusion ratio and continuous forming without stroke limit. But it is still difficult to analyze the realistic model of the process. In this study the analysis using two-dimensional model of $Conform^{TM}$ process together with several parametric investigations on the heat transfer are carried out by FEA code DEFORM $^{TM}2D$. In spite of simple model the results of analysis shows a good guidance to design the real process.

  • PDF

Effect of Process Parameters on Rectangular Cup Impact Extrusion of an AA1070 Aluminum Alloy (AA1070 알루미늄 합금의 사각형상 충격압출 성형에 미치는 공정 조건의 영향)

  • Jo, M.K.;An, E.;Park, I.W.;Song, I.S.;Kim, H. Y.;Kim, D.;Moon, Y.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.323-331
    • /
    • 2015
  • Impact extrusion is an economical and productive process that can replace the multistage deep drawing process for producing deep rectangular cases. In the current work, a three-dimensional finite element analysis of the impact extrusion process of a commercial purity aluminum alloy (AA1070) was performed to predict loads, material flow, and deformed shapes using the Hansel-Spittel rheology law, which describes the flow stress at various temperatures and strain rates. The role of various process parameters such as friction, clearance between punch and die, aspect ratio and thickness of billet on the process and the shapes was analyzed.

A Study on the Forming Characteristics of Flange Using Pipe (파이프를 이용한 플랜지의 성형특성에 관한 연구)

  • Lee, S.D.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.67-74
    • /
    • 2007
  • This study is aimed to find out the optimal forming conditions by comparing and analyzing material flow, deformation pattern, and a forming load through rigid-plastic FEM for a flange using pipe. Flanges are widely used for various purposes as connectors of industrial steel pipes which are manufactured by drawing process. The forming feature of flange was reviewed through both heading process and radial extrusion process in a cold working condition. As a result of simulation, the shape of flange can not be made by heading process, but made by radial extrusion process. The effects of design factors, such as gap-height, die-comer radius, and frictional factors on maximum forming load and deformation pattern are investigated for radial extrusion process.

Deformation Behaviour of Forward -Backward EXtrusion in Rotary Forging Process (회전단조 공정에서 전-후방 압출 특성에 관한 연구)

  • 최석우;윤덕재;임성주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.54-61
    • /
    • 1995
  • Simultaneous forward-backward extrusion upsetting has been carried out by ratray forging. Two materials has been used commericaly 6.61 aluminium ally and 0.2% steel. The effects of working conditions ; spiral feed ; initial aspect ration of specimen and lubricating condition on the backward and forward extrusion were clarified. The extrusion length increases a sthe aspect rationof the specimen increases, the backward extrusion lengthbeing relatively larger than the forward one. The effects of the spiral feed and the material on the extrusion lengthis remarkably large for the large spiral feed.

  • PDF

Reduction of Grain Growth for Al6061 Alloy by the Die Cooling System in Hot Extrusion Process (Al6061 합금의 열간 압출공정에서 금형 냉각시스템에 의한 압출재의 결정립 성장 제어)

  • Ko, Dae-Hoon;Lee, Sang-Ho;Ko, Dae-Cheol;Kim, Ho-Kwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.673-680
    • /
    • 2009
  • In this study, die cooling system using the nitrogen gas has been applied to hot aluminum extrusion process for refining grains and reducing of grain growth. Computational fluid dynamics(CFD) has been carried out to evaluate die cooling effect by nitrogen gas, and the results of CFD have been used to FE-simulation for the prediction of the extrudate temperature in hot extrusion process. Experimental hot extrusion has been performed to observe microstructure and to measure temperature of extrudate. The results of FE-Simulation have been good agreement with those of experiment. Finally, process condition of hot extrusion can be established to reduce grain growth of Al6061 through the experiment.

Development of Porthole Extrusion Die for Improving Welding Pressure in Welding Chamber by Using Numerical Analysis (수치해석을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출금형 개발)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Porthole extrusion process is a very effective metal forming process to produce aluminum profiles with hollow sections. The structure of porthole extrusion die is very complex. In this process, the billet is divided by porthole bridge, and then the divided billet is welded in the welding chamber. The welding pressure in the welding chamber is very important. The higher welding pressure improves the quality of the aluminum profiles. Therefore, the objective of this study is to develop a new porthole extrusion die for improving the welding pressure in the welding chamber by using numerical analysis. The effectiveness of the new porthole extrusion die was verified by using numerical analysis. Through numerical analysis, the welding pressures in the welding chamber between the new porthole die and the conventional porthole die were compared with each other.

Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires (구리-타이타늄 복합선재의 번들압출 성형특성)

  • Lee, Y.S.;Kim, J.S.;Yoon, S.H.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

FE analysis of Extrusion Process and Estimation of welding strength for Micro Multi Cell Tube with Serration (세레이션형 미세 멀티셀 튜브 압출 및 접합강도 평가)

  • Lee Jung Min;Kim Byung Min;Jo Hyung Ho;Kang Chung Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.49-59
    • /
    • 2005
  • This paper describes a development of the extrusion process and estimation of the weldability for multi cell tubes used to cooling system of automobiles. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness in welded part and in the others. Finally, the pattern of the mandrel defection is investigated according to shapes of the porthole and/or chamber.