• Title/Summary/Keyword: Extrusion hole

Search Result 33, Processing Time 0.031 seconds

Multi-Filament Hydrostatic Extrusion and Fine Wire Dieless Stretching Technology (미세 다심선 정수압 압출 및 단선 무금형 신장 성형 기술)

  • Park, Hoon-Jae;Kim, Chang-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.79-85
    • /
    • 2006
  • Multi-filament hydrostatic extrusion was developed as a fine wire manufacturing process and wire forming experiments were conducted. Also, single wire stretch forming process was proposed in the possibility of obtaining long wire with constant cross-section. In the multi filament extrusion since the workpiece, die and forming facility are in the macro forming circumstance, fine wire and fine hole structure with less than a few micrometer can be easily obtained. Although stretch forming does not use a die in order to avoid the friction problem between the workpiece and the die, it is necessary to have high level of technology to maintain cross-sectional shape and measure in longitudinal direction.

  • PDF

Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test (보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구)

  • Yun, Y.W.;Kang, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test (보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향)

  • Yun, Y.W.;Kang, S.H.;Lee, Y.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

Modification of Physico-chemical Properties of Wheat Bran by Twin-screw Extrusion Process -1. Effect of Screw Configuration and Process Parameters on System Parameters- (이축 압출성형 공정에 의한 밀기울의 물리화학적 변형 -1. 스크류의 조합과 공정변수 조절에 따른 시스템 변수의 변화-)

  • Kim, Chong-Tai;Hwang, Jae-Kwan;Cho, Sung-Ja;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.404-413
    • /
    • 1995
  • System parameters (extrusion temperature, extrusion pressure, specific mechanical energy, mean residence time) were analysed on three different screw configurations during twin-screw extrusion of wheat bran. Experiments were conducted over a screw speed of $280{\sim}380\;rpm$, feed rate of $22{\sim}38\;kg/hr$ and moisture content of $17{\sim}33%$ using screws assembled with 3, 4, and 5 reverse screw elements (RSE) adjacent to the heating zone of the barrel. Extrusion temperature increased with increasing RSE but it decreased with increasing feed rate and moisture content. Decreasing the filling ratio of the screw resulted in a lower extrusion pressure, and increasing the length of the RSE gave similar results due to the higher temperature and lower viscosity of melted dough. It was also observed that increasing the feed rate and decreasing moisture content resulted in the reduced extrusion pressure. Specific mechanical energy (SME) decreased when the feed rate and moisture content increased, and SME increased when using RSE posses from 3 to 5. Screw configuration posses with 4 RSE yielded the longest RT, and the smaller the die hole, the higher the RT. In contrast, RT decreased when the feed rate increased. With increasing moisture content RT for 3 RSE increased, but that for 4 and 5 RSE decreased.

  • PDF

Effect of Process Variables on System Parameters in Extrusion Cooking of Corn Grit by Twin Screw Extruder (옥분 압출가공시 이축압출성형기의 운전조건에 따른 System Parameters의 변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.81-87
    • /
    • 1991
  • To examine the effect of the individual operational variables on extrusion process, test trials of the fractional factorial design of the three process variables at three levels, including feed rate, screw speed and die openings, were carried out by using a laboratory scale twin-screw extruder with three different screw configuration for corn grit with the water addition fixed at 15% of the powder feed rate. As the increase of feed rate, while extrusion temperature(ET), specific mechanical energy input (SME), and residence time(RT) were showed the tendency to decrease, extrusion pressure(EP) was increased and as the increase of screw speed, ET, SME and EP were showed the tendency to increase, but RT was decreased. However, as increase the number of die hole, all system parameters were showed the tendency to decrease. The influence of the change in each process parameters was increased as the increase of the number of reverse element in screw configuration. In case of using the screw configuration with increasing number of reverse element at the condition of same process parameters, ET, SME and RT was increased, but EP was decreased. The functional relationships of the system parameters to the process parameters can be quantified by using multiple regression equations(mostly R-sq>0.90) and maped on suface response diagrams to expedite evaluation.

  • PDF

A Study on the Extru-Bending Process of the Angle Product with 'Λ' Section Using Two Extrusion Billets (두 개의 압출빌렛을 사용하는 'Λ' 단면 앵글 구조재의 압출굽힘가공에 관한 연구)

  • Lee K. K.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.160-167
    • /
    • 2005
  • In the present study about extru-bending of angle product, the bending of extruded angle products with the $'\Lambda'$ section and 'ㄱ', section can be obtained using two extrusion billets by the hot metal extru-bending machine with the two punches moving in the different velocity. The bending curvature can be controlled by the different velocity of billets through the two-hole container. This paper describes simulations and experiments of extru-bending process that can make bending during extruding by the difference of stem velocities. And they are applied to two kinds of dies, that is, one of them is conical dies with symmetry $'\Lambda'$ section and the other one is conical dies with asymmetry 'ㄱ' section. The results of the forming simulation by $DEFORM^{TM}-3D$ and results of experiments show that the bending phenomenon at the die exit during extrusion can be obtained with two extrusion billet by the two stems moving in the different velocity. And it was known that it is possible to design the structure of conical cavity of extrusion dies and to control the curvature of product through the simulation and experiment of extru-bending process.

Hot Metal Extru-Bending Process for the Aluminum Curved Tube Product (알루미늄 중공 곡관제품의 열간 압출굽힘가공)

  • 박대윤;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.359-362
    • /
    • 2003
  • The bending phenomenon has been known to be occurred by the different of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the cohesion of billet inside the porthole die chamber. The bending phenomenon can be controlled by the different hole diameter. The experiments using aluminium material for the curved tube product had been done. The results of the experiment show that the curved tube product can be formed by the extru-bending process without the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling. It is known that the welding and extruding of each billet has done simultaneously although the curved tube is extruded with four billets.

  • PDF

Finite Element Analysis of TEE Forming for HDPE Pipe (HDPE 관의 TEE 성형에 대한 유한요소해석)

  • Wang Chang-Bum;Song Doo-Ho;Park Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.298-307
    • /
    • 2006
  • TEE Forming process for HDPE(High Density PolyEthylen) pipe has been analyzed by using rigid plastic finite element code, DEFORM-3D. TEE of HDPE pipes is necessary to connect main pipe with branch pipe and change the flow direction of hot water. A HDPE pipe is used as a insulator to maintain the temperature of hot water A butt welding process through TEE forming for a HDPE pipe is a updated process improving the strength of welding part compared to conventional extrusion welding process. The Experiment of Hot and Cold Forming have been performed. The design parameters such as a initial hole shape have been obtained through rigid-plastic finite element analysis, which is applied to the actual manufacturing process.

  • PDF

A Study on the Die Set Design for Multi-Hole Extrusion Process Using Taguchi Method (다구찌 방법을 이용한 다발압출 금형설계에 관한 연구)

  • 조성진;이재원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.322-325
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.