• Title/Summary/Keyword: Extrusion Work

Search Result 112, Processing Time 0.024 seconds

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • Seok, Hyeon-Gwang;Kim, Yu-Chan;Yang, Gui Fu;Cha, Pil-Ryeong;Jo, Seong-Yun;Yang, Seok-Jo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

Assessment of Emitted Volatile Organic Compounds, Metals and Characteristic of Particle in Commercial 3D Printing Service Workplace (실제 3D 프린팅 작업장에서 발생하는 공기 중 유기화합물, 금속 및 입자특성 평가)

  • Kim, Sungho;Chung, Eunkyo;Kim, Seodong;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Objectives: 3D printing technologies have become widely developed and are increasingly being used for a variety of purposes. Recently, the evaluation of 3D printing operations has been conducted through chamber test studies, and actual workplace studies have yet to be completed. Therefore, the objective of this study was to determine the emission of volatile organic compounds(VOCs), metals, and particles from printing operations at a workplace. This included monitoring conducted at a commercial 3D printing service workplace where the processes involved material extrusion, material jetting, binder jetting, vat photo polymerization, and powder bed fusion. Methods: Area samples were collected with using a Tenax TA tube for VOC emission and MCE filter for metals in the workplace. For particle monitoring, Mini Particle Samplers(MPS) were also placed in the printer, indoor work area, and outdoor area. The objective was to analyze and identify particles' size, morphology, and chemical composition using transmission electron microscopy with energy dispersive spectroscopy(TEM-EDS) in the workplace. Results: The monitoring revealed that the concentration of VOCs and metals generated during the 3D printing process was low. However, it also revealed that within the 3D printing area, the highest concentration of total volatile organic compounds(TVOC) was 4,164 ppb at the vat photopolymerization 3D printing workplace, and the lowest was 148 ppb at the material extrusion 3D printing workplace. For the metals monitoring, chromium, which, is carcinogenic for humans, was detected in the workplace. As a characteristic of the particles, nano-sized particles were also found during the monitoring, but most of them were agglomerated with large and small particles. Conclusions: Based on the monitoring conducted at the commercial 3D printing operation, the results revealed that the concentration of VOCs and metals in the workplace were within Korea's occupational exposure limits. However, due to the emission of nano-sized particles during 3D printing operations, it was recommended that the exposure to VOCs and metals in the workplace should be minimized out of concern for workers' health. It was also shown that the characteristics of particles emitted from 3D printing operations may spread widely within an indoor workplace.

Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity (생균력 증진을 위한 농업용 미생물제 미세캡슐화)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.287-293
    • /
    • 2005
  • In this work, to develop soil inoculant which maintains stable viable cells and normalized quality, studies on micro-encapsulation with bacteria and yeast cells were performed by investigating materials and methods for micro-encapsulation as well as variation and stability of encapsulated cells. Preparation of capsule was conducted by application of extrusion system using micro-nozzle and peristaltic pump. K-carragenan and Na-alginate were selected as best carrier for gelation among K-carageenan, Na-alginate, locust bean gum, cellulose acetate phthalate (CAP), chitosan and gelatin tested. Comparing the gels prepared with Bacillus sp. KSIA-9 and carriers of 1.5% concentration, although viable cell of K-carragenan and Na-alginate was six times higher than those of other, Na-alginate was finally selected as carrier for gelation because it is seven times cheaper than K-carragenan. The gel of 1.5% Na-alginate was also observed to have the best morphology with circular hardness polymatrix and highest viable cell. When investigating the stability of encapsulated cells and the stabilizer effect, free cells were almost dead within 30 or 40 days whereas encapsulated cells decreased in 10% after 30 days and 15-30% even after 120 days. As stabilizer for maintaining viable cell, both 1% starch and zeolite appeared to possess the level of 70-80% cell for bacteria and yeast until after 120 days.

Strength Characteristics of 3D Printed Concrete According to the Stacking Direction (적층 방향에 따른 3D 프린팅 콘크리트의 강도 특성)

  • Won, Hee-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.632-637
    • /
    • 2021
  • In order to develop future construction technology, research is actively being conducted on concrete construction technology using 3D printing, which is currently in the spotlight as a future industry in domestic and foreign construction industries and academia. However, 3D printing technology is currently being developed and does not meet the requirements for proper construction technology and the properties of concrete materials, and it is difficult to apply in the actual field. Research is also needed for the durability management and maintenance of constructed structures. This work compares the compressive and flexural strength to that produced in conventional molds by dividing the 3D printed concrete output by the laminated X, Y, and Z axes. The compressive strength of a test specimen in the II Z-axis test direction was 8-10% higher than that of the other test directions (I and III Y axes and X axis). The strength was 4% lower than that of a molded test specimen. As of 28th of the age, the bending strength of the test specimen in the Z-axis direction was 5 to 7% higher than that of the I and III Y, and X-axis test directions, and the strength was 2% lower than that of the molded test specimen.

Studies on the Change in Rheological Properties of Chungkook-jang (청국장의 물성 변환에 대한 연구)

  • Lee, Boo-Yong;Kim, Dong-Man;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.478-484
    • /
    • 1991
  • As a work on the preparation of spread type product using chungkook-jang, proximate composition and enzyme activity of chungkook-jang were analyzed and extrusion capillary viscometer was made. The effects of moisture content, oil type and content and temperature on the rheological properties of chungkook-jang spread were investigated. As the moisture content of chungkook-jang spread increased from 55% to 65%, apparent viscosity $({\eta}a)$ decreased and spreadibility and L value in Hunter color system increased. On the contrary, as the added oil content of chungkook-jang spread increased from 10% to 30%, rla increased and spreadibility and L value decreased. Specially, in case of palm olefin addition, the rla of chungkook-jang spread was more high than that of soybean oil addition. As the temperature of chungkook-jang spread increased, rla decreased and spreadibility increased. In the same conditions, the ${\eta}a$ of chungkook-jang spread increased in order of B. natto, B. natto and B. subtilis mixture and B. subtilis fermentation.

  • PDF

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

The Characterization of Pyrophyllite Based Ceramic Reactive Media for Permeable Reactive Barriers (투수성반응벽체 적용을 위한 납석광물 기반 세라믹 반응매질의 특성평가)

  • Cho, Kanghee;Kim, Hyunsoo;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.227-234
    • /
    • 2018
  • In this work, we have prepared the reactive media with the pyrophyllite based using ceramic extrusion process. The characteristics of pyrophyllite were analyzed using XRD, XRF, DSC-TGA and Zeta-potential analysis. The study of pyrophyllite based ceramic reactive media were conducted under various roasting temperature (500 to $1,300^{\circ}C$) conditions. With increasing the roasting temperature, strength was increased but BET surface area was decreased. Thermally treated pyrophyllite were analyzed by means of weight loss and structural changes as detected by using XRD, DSC-TGA and SEM analysis. Pyrophyllite primarily transforms to pyrophyllite dehydroxylate after roasting at $1,000^{\circ}C$. Pyrophyllite dehydroxylate transforms to mullite and cristobalite at $1,300^{\circ}C$. This study demonstrates that pyrophyllite could be used as a reactive media for ceramic support layers from Permeable Reactive Barriers.

Transformation of digital dentistry and the need of introducing education in dental hygiene (디지털 덴티스트리의 전환과 치위생교육 도입의 필요성)

  • Hye-Bin Go;Young-Joo Seo;Bok-Yeon Won;Sang-Hwan Oh
    • Journal of Korean society of Dental Hygiene
    • /
    • v.22 no.6
    • /
    • pp.467-475
    • /
    • 2022
  • Objectives: This study aimed to understand the definitions, types, and principles of computer-aided design/computer-aided manufacturing (CAD/CAM) and scanners due to the introduction of digital workflows. Methods: This study was based on information from the government's law and articles published in academic journals. Results: CAD/CAM is a technology that measures the shape three-dimensionally, saves it as data, designs it into the desired shape, and processes the product. Scanners, which are classified as intraoral and extraoral scanners, measure teeth and the intraoral environment three-dimensionally and convert them into three-dimensional (3D). A 3D printer is a machine that creates a 3D object by layering materials based on a 3D drawing. It can be classified into four types according to the method: extrusion, powder bonding, lamination, and photopolymerization methods. The most used 3D printer methods in dentistry are stereolithograhpy and digital light processing, and they are widely used in prosthetic, surgical, and orthodontic fields. Conclusions: As the dental system is digitized, it is expected that the government will classify the dental hygienist scope of work and the universities will reflect the curriculum; it is necessary to develop excellent dental hygienists, diversify the educational pathways, and establish policies to meet the needs of the increasing number of patients.

The Status of 3D Printing Industry and Researches on Exposure to Hazards When Using Metal Materials (3D프린팅 산업 및 금속소재 사용시 유해인자 노출 연구 현황)

  • Hae Dong Park;Leejun HUH
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We attempted to provide an overview of the laws and current state of the 3D printing industry in South Korea and around the world, using the annual industry surveys and the Wohler report. Additionally, we reviewed articles relating to the potential exposure to hazards associated with 3D printing using metal materials. In South Korea, there were 406 3D printing-related businesses, employing 2,365 workers, and the market size was estimated at 455.9 billion won in 2021. Globally, the average growth rate of the 3D printing industry market over the past 10 years was 27.4%, and the market size was estimated at $11.8 billion in 2019. The United States had the highest cumulative installation ratio of industrial 3D printers, followed by China, Japan, Germany, and South Korea. A total of 6,168 patents related to 3D printing were registered in the US between 2010 and 2019. Harmful factors during metal 3D printing was mainly evaluated in the powder bed fusion and direct energy deposition printing types, and there is a case of material extrusion type with metal additive filaments. The number, mass, size distribution, and chemical composition of particles were mainly evaluated. Particle concentration increases during the opening of the chamber or post-processing. However, operating the 3D printer in a ventilated chamber can reduce particle concentration to the background level. In order to have a safe and healthy environment for 3D printing, it is necessary to accumulate and apply knowledge through various studies.