• Title/Summary/Keyword: Extreme wave height

Search Result 59, Processing Time 0.03 seconds

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (II) - Characteristics of extreme waves generated by Typhoon MAEMI in the south coast of Korea - (제3세대 파랑추산모형을 이용한 태풍 '매미'의 극한파랑 재현 (II) - 태풍 '매미'가 야기한 우리나라 남해안 일대의 극한파랑 특성 -)

  • Shin Seung-Ho;Hong Keyyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.219-225
    • /
    • 2004
  • Following a preceding study if Shin et al.(2004), wave fields for a month if September if 2003 are simulated based on the modified WAM cycle 4 model that enables the precise wave hindcasting with fine spatial meshes, and characteristics of extreme waves at the south roast if Koreo are analyzed The accuracy if applied wave model is verified by comparing computed wave parameters and corresponding ones measured at Ieodo ocean research station. The wave hindasting if typhoon 'Maemi' with an hour time interval reveals the extreme wave characteristics at 4 primary locations if south coast of Korea as follows: 1) At the front sea of Chaguido in the south of Jeju-do, the maximum significant wave height, moon wave period and mean wave direction appear to be 7.41m, 13.65s and $6.4^{\circ}$, respectively at 16:00 KST if Sep. 12, 2003. 2) At the entrance of Masan Bay, 12.50m, 13.65s and $1.2^{\circ}$ at 21:00 KST if Sep. 12. 3) At the front sea of Suyoung Bay, 13.85m, 13.81s and $0.2^{\circ}$ at 22;00 KST if Sep. 12. 4) At the front sea of Ulsan port, 11.00m, 13.25s and $28^{\circ}$ at 23:00 KST if Sep.

  • PDF

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (II) - Characteristics of extreme waves generated by Typhoon MAEMI in the south coast of Korea - (제3세대 파랑추산모형을 이용한 태풍 ‘매미’의 극한파랑 재현 (II) - 태풍 ‘매미’가 야기한 우리나라 남해안 일대의 극한파랑 특성 -)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.745-751
    • /
    • 2004
  • Following a preceding study of Shin et al.(2004), wave fields for a month of September of 2003 are simulated based on the modified WAM cycle 4 model that enables the precise wave hindcasting with fine spatial meshes, and characteristics of extreme waves at the south coast of Korea are analyzed The accuracy of applied wave model is verified by comparing computed wave parameters and corresponding ones measured at Ieodo ocean research station. The wave hindcasting of typhoon 'Maemi' with an hour time interval reveals the extreme wave characteristics at 4 primary locations of south coast of Korea as follows: 1) At the front sea of Chaguido in the south of Jeju-do, the maximum significant wave height, mean wave period and mean wave direction appear to be 7.41m, 13.65s and $6.4^{\circ}$ respectively at 16:00 KST of Sep. 12, 2003. 2) At the entrance of Masan Bay, 12.50m, 13.65s and $1.2^{\circ}$ at 21:00 KST of Sep. 12. 3) At the front sea of Suyoung Bay, 13.85m, 13.81s and $0.2^{\circ}$ at 22;00 KST of Sep. 12. 4) At the front sea of Ulsan port, l1.00m, 13.25s and $2.8^{\circ}$ at 23:00 KST of Sep. 12.

Analysis of Confidence Interval of Design Wave Height Estimated Using a Finite Number of Data (한정된 자료로 추정한 설계파고의 신뢰구간 분석)

  • Jeong, Weon-Mu;Cho, Hong-Yeon;Kim, Gunwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.191-199
    • /
    • 2013
  • It is estimated and analyzed that the design wave height and the confidence interval (hereafter CI) according to the return period using the fourteen-year wave data obtained at Pusan New Port. The functions used in the extreme value analysis are the Gumbel function, the Weibull function, and the Kernel function. The CI of the estimated wave heights was predicted using one of the Monte-Carlo simulation methods, the Bootstrap method. The analysis results of the estimated CI of the design wave height indicate that over 150 years of data is necessary in order to satisfy an approximately ${\pm}$10% CI. Also, estimating the number of practically possible data to be around 25~50, the allowable error was found to be approximately ${\pm}$16~22% for Type I PDF and ${\pm}$18~24% for Type III PDF. Whereas, the Kernel distribution method, a typical non-parametric method, shows that the CI of the method is below 40% in comparison with the CI of the other methods and the estimated design wave height is 1.2~1.6 m lower than that of the other methods.

Occurrence Probability of Freak Waves at Nearshore of Donghae Harbor in the East Sea (동해항 전면 해역에서의 Freak Waves 발생확률)

  • Ahn, Kyungmo;Oh, Chan Young;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.258-265
    • /
    • 2015
  • Over the last 20 years, freak waves have attracted many researchers because of their unexpected behaviors and damages on offshore structures and vessels in the ocean and coastal waters. Despite many researches on the causes, mechanisms and occurrence of freak waves, we have not reached consensus on the results of the researches. This paper presents the occurrence probability of freak waves based on the analysis of wave records measured at coastal waters of Donghae harbor in the East Sea. Three freak waves were found which satisfied conditions of m and $H_S{\geq}2.5m$ and $H_m/H_S{\geq}2$. The occurrence probabilities of freak waves were estimated from extreme distributions by Mori, Rayleigh and Ahn, and found to be on the orders of O($10^{-1}$), O($10^{-2}$), and O($10^{-3}$), respectively. The occurrence probabilities of freak waves measured from waves records were estimated between O($10^{-2}$) and O($10^{-3}$), which were located between predictions by Rayleigh and Ahn's extreme probability distributions. However, we need more analysis of wave records obtained from diverse field conditions in order to verify the accuracy of the estimation of occurrence probability of freak waves.

Assessment of New Design Wave by Spread Parameter and Expected Sliding Distance of Caisson Breakwater (확산모수와 제이슨방파제 기대활동량을 이용한 개정 설계파 분석)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2007
  • Extreme value distributions for new deep sea wave were analyzed by using spread parameter and correlations between spread parameter and sliding distance of caisson breakwater were shown in numerical example. When spread parameter is larger than as usual, there occurred extra-ordinarily large wave height among 50 annual maximum significant waves generated by extreme value distribution. Spread parameter of new design wave is identified to be comparably larger than some foreign coastal areas and may cause large sliding displacement though deterministic safety factor for sliding is satisfied with enough margin.

Effects of environmental parameters for offshore wind turbine system with jacket support structure (환경변수가 자켓 하부구조물 해상 풍력시스템 거동에 미치는 영향)

  • Lee, Jong-Sun;Park, Hyun-Chul;Shi, Wei;Kim, Yong-Hwan;Na, Sangkwon;Lee, Jonghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • This study investigates the effects of Pierson-Moskowitz, Jonswap spectrum that are typical irregular wave spectrums for wind turbine system with jacket support structure. Also various offshore environmental parameters based on korean local condition were used in our study. The loads acting on the system was considered by referring to the Design Load Case from IEC guide line. And improved von Karman model was used as a turbulence model. As a result, various significant wave height and peak spectral period cause noticeable difference of extreme and fatigue loads prediction.

  • PDF

Projection of the Future Wave Climate Changes Over the Western North Pacific (기후변화에 따른 북서태평양에서의 미래 파랑 전망)

  • Park, Jong Suk;Kang, KiRyong;Kang, Hyun-Suk;Kim, Young-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.267-275
    • /
    • 2013
  • This study projected the future ocean wave climate changes based on global climate change scenario using the coupled climate model HadGEM2-AO according to the emission scenarios and using regional wave model. Annual mean significant wave height (SWH) is linked closely to annual mean wind speed during the forthcoming 21st Century. Because annual mean speed decreased in the western North Pacific, annual mean SWH is projected to decrease in the future. The annual mean SWH decreases for the last 30 years of the 21st century relative to the period 1971-2000 are 2~7% for RCP4.5 and 4~11% for RCP8.5, respectively. Also, extreme SWH and wind speed are projected to decrease in the future. In terms of seasonal mean, winter extreme SWH shows similar trend with annual extreme SWH; however, that of summer shows large increasing tendency compared with current climate in the western North Pacific. Therefore, typhoon intensity in the future might be more severe in the future climate.

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data (인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.524-535
    • /
    • 2021
  • Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.