DOI QR코드

DOI QR Code

Occurrence Probability of Freak Waves at Nearshore of Donghae Harbor in the East Sea

동해항 전면 해역에서의 Freak Waves 발생확률

  • Ahn, Kyungmo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Oh, Chan Young (Department of Spatial Design & Engineering, Handong Global University) ;
  • Jeong, Weon Mu (Coastal Development & Ocean Energy Research Division, KIOST)
  • 안경모 (한동대학교 공간환경시스템공학부) ;
  • 오찬영 (한동대학교 공간설계공학과) ;
  • 정원무 (한국해양과학기술원 연안개발.에너지연구부)
  • Received : 2015.08.20
  • Accepted : 2015.08.25
  • Published : 2015.08.31

Abstract

Over the last 20 years, freak waves have attracted many researchers because of their unexpected behaviors and damages on offshore structures and vessels in the ocean and coastal waters. Despite many researches on the causes, mechanisms and occurrence of freak waves, we have not reached consensus on the results of the researches. This paper presents the occurrence probability of freak waves based on the analysis of wave records measured at coastal waters of Donghae harbor in the East Sea. Three freak waves were found which satisfied conditions of m and $H_S{\geq}2.5m$ and $H_m/H_S{\geq}2$. The occurrence probabilities of freak waves were estimated from extreme distributions by Mori, Rayleigh and Ahn, and found to be on the orders of O($10^{-1}$), O($10^{-2}$), and O($10^{-3}$), respectively. The occurrence probabilities of freak waves measured from waves records were estimated between O($10^{-2}$) and O($10^{-3}$), which were located between predictions by Rayleigh and Ahn's extreme probability distributions. However, we need more analysis of wave records obtained from diverse field conditions in order to verify the accuracy of the estimation of occurrence probability of freak waves.

지난 20년 동안 해양구조물과 선박 등에 예상치 못한 피해를 주는 freak waves에 대한 연구자들의 관심이 증가하고 있다. 다양한 연구결과에도 불구하고 아직 freak waves의 발생원인, 발생 메커니즘, 발생확률 등에 대한 상반된 결과로 인해 합의된 결과가 도출되지 못하고 있다. 본 논문에서는 동해항 전면 해상에서 측정된 파랑자료를 분석하여 freak waves에 대한 발생확률을 추정하였다. 유의파고 2.5 m 보다 크고 $H_m/H_S{\geq}2$인 freak waves 3개를 발견하였다. Freak waves의 발생확률은 극치파고분포함수를 사용하여 추정하기 적절하며, Mori, Rayleigh, 그리고 Ahn의 극치파고분포함수는 freak wave의 발생확률을 각각 약 O($10^{-1}$), O($10^{-2}$), 그리고 O($10^{-3}$) 정도로 추정하였다. 본 논문에서 분석된 파랑자료의 freak waves의 발생확률은 O($10^{-2}$)와 O($10^{-3}$) 사이에 위치하였다. 즉, Rayleigh와 Ahn의 극치파고분포함수에 의해 예측된 발생확률의 중간에 위치하였다. 현재 Rayleigh와 Ahn의 극치파고분포함수 중에 어떤 분포함수가 정확한지에 대한 판단은 좀 더 다양한 해역에서의 freak waves의 발생확률에 대한 분석이 필요하다고 판단된다.

Keywords

References

  1. Ahn, K. (2002). Probability distribution of extreme wave heights in finite water depth, Proceedings of 29th International Conference on Coastal Engineering, ASCE, 614-625.
  2. Ahn, K., Kim, S. and Cheon, S. (2012). On the probability of distribution of freak waves in finite water depth, Proceedings of 34h International Conference on Coastal Engineering, ASCE,
  3. Bitner-Gregersen, E.M. and Toffoli, A. (2012). On the probability of occurrence of rougue waves, Natural Hazards and Earth System Sciences, 12, 751-762. https://doi.org/10.5194/nhess-12-751-2012
  4. Dean, R.G. (1990). Freak waves: A possible explanation. Water Wave Kinematics, A. Torum and O.T. Gudmastad, Eds. Kluwer, 609-612.
  5. Gramstad and Trulsen, (2007). Influence of vrest and group length on the occurrences of freak waves. J. Fluid Mechanics, 582, 463-472. https://doi.org/10.1017/S0022112007006507
  6. Henderson, K.L, Peregrine, D.H. and Dold, J.W. (1999). Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation. Wave Motion 29, 241-361.
  7. Janssen, P.A.E.M. (2003). Nonlinear four-wave interactions and freak waves, Journal of Physical Oceanography 33, 863-884. https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
  8. Kharif, C. and E. Pelinovsky (2003). Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics - B/Fluids 22 (6), 603-634. https://doi.org/10.1016/j.euromechflu.2003.09.002
  9. Kharif, C., Pelinovsky, E. and Slunyaev, A. (2009). Rogue waves in the ocean, Advances in Geophysical and Environmental Mechanics and Mathematics, Springer, Berlin.
  10. Mori, N. (2004). Occurrence probability of a freak wave in a nonlinear wave field, Ocean Engineering, 31, 165-175. https://doi.org/10.1016/S0029-8018(03)00119-7
  11. Mori, N. and P.A.E.M Janssen (2006). On kurtosis and occurrence probability of freak waves. Journal of Physical Oceanography 36, 1471-1483 https://doi.org/10.1175/JPO2922.1
  12. Mori, N., Onorato, M. and Janssen, P., (2011). On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Ocean, 41, 1484-1497. https://doi.org/10.1175/2011JPO4542.1
  13. Olagnon, M. and Prevosto, M. (Eds.) (2008). Proceedings of the Rogue waves. IFREMER, Brest.
  14. Ochi, M. (1998). Ocean waves: The stochastic approach, Cambridge University Press.
  15. Panicker, N.N. and L.E. Borgman. (1974). Enhancement of directional wave spectrum estimates. Proceedings of 14th International Conference on Coastal Engineering, 258-279.
  16. Sand, S.E., Ottesen Hansen, N.E., Klinting, P., Gudmestad, O.T. and Sterndorf, M.J. (1989). Freak wave kinematics. Proceedings, NATO Advanced Research Workshop on Water Wave Kinematics, Molde, Norway.
  17. Stansell, P. (2005). Distributions of extreme wave crest and trough heights measured in the North Sea. Ocean Engineering 32, 1015-1036. https://doi.org/10.1016/j.oceaneng.2004.10.016
  18. Yasuda, T. and Mori, N. (1997). Occurrence properties of giant freak waves in sea area around Japan. Journal of Waterways, Port, Coastal and Ocean Engineering 123 (4), 209-213. https://doi.org/10.1061/(ASCE)0733-950X(1997)123:4(209)