• Title/Summary/Keyword: Extreme precipitation

Search Result 260, Processing Time 0.023 seconds

The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea (56년간 한반도 강수 및 풍속의 극값 변화)

  • Choi, Eu-Soo;Moon, Il-Ju
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon (아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim;Hyoeun Oh
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.257-271
    • /
    • 2024
  • In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.

Spatio-Temporal Changes in Seasonal Multi-day Cumulative Extreme Precipitation Events in the Republic of Korea (우리나라 사계절 다중일 누적 극한강수현상의 시·공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.1
    • /
    • pp.98-113
    • /
    • 2015
  • In this study, spatial and temporal patterns and changes in seasonal multi-day cumulative extreme precipitation events defined by maximum 1~5 days cumulative extreme precipitation observed at 61 weather stations in the Republic of Korea for the recent 40 years(1973~2012) are examined. It is demonstrated that the magnitude of multi-day cumulative extreme precipitation events is greatest in summer, while their sensitivity relative to the variations of seasonal total precipitation is greatest in fall. According to analyses of linear trends in the time series data, the most noticeable increases in the magnitude of multi-day cumulative extreme precipitation events are observable in summer with coherences amongst 1~5 days cumulative extreme precipitation events. In particular, the regions with significant increases include Gyeonggi province, western Gangwon province and Chungcheong province, and as the period for the accumulation of extreme precipitation increases from 1 day to 5 days, the regions with significantly-increasing trends are extended to the Sobaek mountain ridge. It is notable that at several scattered stations, the increases of 1~2 days cumulative extreme precipitation events are observed even in winter. It is also observed that most distinct increasing tendency of the ratio of these multi-day cumulative extreme precipitation to seasonal total precipitation appears in winter. These results indicate that proactive actions are needed for spatial and temporal changes in not only summer but also other seasonal multi-day cumulative extreme precipitation events in Korea.

  • PDF

Relative contributions of weather systems to the changes of annual and extreme precipitation with global warming

  • Utsumi, Nobuyuki;Kim, Hyungjun;Kanae, Shinjiro;Oki, Taikan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.234-234
    • /
    • 2015
  • The global patterns of annual and extreme precipitation are projected to be altered by climate change. There are various weather systems which bring precipitation (e.g. tropical cyclone, extratropical cyclone, etc.). It is possible in some regions that multiple weather systems affect the changes of precipitation. However, previous studies have assessed only the changes of precipitation associated with individual weather systems. The relative contributions of the weather systems to the changes of precipitation have not been quantified yet. Also, the changes of the relative importance of weather systems have not been assessed. This study present the quantitative estimates of 1) the relative contributions of weather systems (tropical cyclone (TC), extratropical cyclone (ExC), and "others") to the future changes of annual and extreme precipitation and 2) the changes of the proportions of precipitation associated with each weather system in annual and extreme precipitation based on CMIP5 generation GCM outputs. Weather systems are objectively detected from twelve GCM outputs and six models are selected for further analysis considering the reproducibility of weather systems. In general, the weather system which is dominant in terms of producing precipitation in the present climate contributes the most to the changes of annual and extreme precipitation in each region. However, there are exceptions for the tendency. In East Asia, "others", which ranks the second in the proportion of annual precipitation in present climate, has the largest contribution to the increase of annual precipitation. It was found that the increase of the "others" annual precipitation in East Asia is mainly explained by the changes of that in summer season (JJA), most of which can be regarded as the summer monsoon precipitation. In Southeast Asia, "others" precipitation, the second dominant system in the present climate, has the largest contribution to the changes of very heavy precipitation (>99.9 percentile daily precipitation of historical period). Notable changes of the proportions of precipitation associated with each weather system are found mainly in subtropics, which can be regarded as the "hotspot" of the precipitation regime shift.

  • PDF

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

Analysis of Spatial-temporal Variability and Trends of Extreme Precipitation Indices over Chungcheong Province, South Korea (충청지역 극한강우지수의 시공간적 경향과 변동성 분석)

  • Bashir, Adelodun;Golden, Odey;Seulgi, Lee;Kyung Sook, Choi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.101-112
    • /
    • 2022
  • Extreme precipitation events have recently become a leading cause of disasters. Thus, investigating the variability and trends of extreme precipitation is crucial to mitigate the increasing impact of such events. Spatial distribution and temporal trends in annual precipitation and four extreme precipitation indices of duration (CWD), frequency (R10 mm), intensity (Rx1day), and percentile-based threshold (R95pTOT) were analyzed using the daily precipitation data of 10 observation stations in Chungcheong province during 1974-2020. The precipitation at all observation stations, except the Boryeong station, showed nonsignificant increasing trends at 95% confidence level (CL) and increasing magnitudes from the west to east regions. The high variability in mean annual precipitation was more pronounced around the northeast and northwest regions. Similarly, there were moderate to high patterns in extreme precipitation indices around the northeast region. However, the precipitation indices of duration and frequency consistently increased from the west to east regions, while those of intensity and percentile-based threshold increased from the south to east regions. Nonsignificant increasing trends dominated in CWD, R10 mm, and Rx1day at all stations, except for R10 mm at Boeun station and Rx1day at Cheongju and Jecheon stations, which showed a significantly increasing trend. The spatial distribution of trend magnitude shows that R10 mm increased from the west to east regions. Furthermore, variations in precipitation were very strongly correlated (99% CL) with R10 mm, Rx1day, and R95pTOT at all stations, except with wR10 mm at Cheongju station, which was strongly correlated with a 95% CL.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

A Bayesian Analysis of Return Level for Extreme Precipitation in Korea (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.947-958
    • /
    • 2014
  • Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.

Characterization of the Variability of Summer Extreme Precipitation According to the Local Features (지역특성에 따른 여름철 극한강수 변화특성 분석)

  • Kim, Gwangseob;Kim, Jong Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.129-146
    • /
    • 2011
  • Characterization the regional impact of the variability of summer extreme precipitation and the rain days over several thresholds (i.e. 10, 20, 30, 40, 50, 60, 70 and 80 mm/day) in South Korea was performed using daily precipitation data of 59 weather stations operated by Korean Meteorological Administration (KMA). To consider the local features of weather stations, we characterized the variability according to the difference of elevations, latitudes, longitudes, river basins, inland or shore area, and the ratio of urbanization. The results showed that the summer extreme precipitation is sensible to the geographical effect which is similar to that of the annual precipitation. Rain days over thresholds have increased during 1973-2009 while the annual rain days have decreased. This indicate that the concentration of precipitation in summer season will be intensified in the future. Increase of summer precipitation amount and number of extreme rain days is higher in inland area, urbanized area, and Han-River basin than that of shore area, unurbanized area, and the other river basins respectively.

Bias Correction of RCP-based Future Extreme Precipitation using a Quantile Mapping Method ; for 20-Weather Stations of South Korea (분위사상법을 이용한 RCP 기반 미래 극한강수량 편의보정 ; 우리나라 20개 관측소를 대상으로)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.133-142
    • /
    • 2012
  • The objective of this study was to correct the bias of the Representative Concentration Pathways (RCP)-based future precipitation data using a quantile mapping method. This method was adopted to correct extreme values because it was designed to adjust simulated data using probability distribution function. The Generalized Extreme Value (GEV) distribution was used to fit distribution for precipitation data obtained from the Korea Meteorological Administration (KMA). The resolutions of precipitation data was 12.5 km in space and 3-hour in time. As the results of bias correction over the past 30 years (1976~2005), the annual precipitation was increased 16.3 % overall. And the results for 90 years (divided into 2011~2040, 2041~2070, 2071~2100) were that the future annual precipitation were increased 8.8 %, 9.6 %, 11.3 % respectively. It also had stronger correction effects on high value than low value. It was concluded that a quantile mapping appeared a good method of correcting extreme value.