• Title/Summary/Keyword: Extreme drought

Search Result 157, Processing Time 0.028 seconds

Probabilistic Analysis of Drought Propagation Over The Han River Basin Under Climate Change (기후변화에 따른 한강 유역의 확률론적 가뭄 전이 분석)

  • Muhammad, Nouman Sattar;Kim, Ji-Eun;Lee, Joo-Heon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.155-163
    • /
    • 2019
  • The knowledge about drought propagation is very important in accurate estimation of hydrological drought characteristics and efficient development of early warning system. This study investigated a probabilistic relationship of drought propagation based on Bayesian network model for historic period and for future projection under climate change scenario RCP 8.5 over the Han River basin. The results revealed that the propagation rate and lag time have increasing and decreasing trends from the historic period of 1967-2013 to the future periods of 2014-2053 and 2054-2100 under climate change, respectively. The probabilistic results of Bayesian model revealed that the probability of occurrence of lag time varied spatially and decreased when the intensity of meteorological drought changed from moderate to severe and extreme condition during 1967-2013. The values of probability increased in the first future period of 2014-2053 in several sub-basins and slight decreased in the second period of 2054-2100. The proposed probabilistic results will be useful for the decision makers to develop related policies with an appropriate insight toward the future drought status.

Evaluation of Economic Damage Caused by Drought in Central Region Vietnam: A Case Study of Phu Yen Province

  • Truong, Dinh Duc;Tri, Doan Quang
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.649-657
    • /
    • 2021
  • This paper aims to study the impact of natural disasters on per capita income in Vietnam both the short and long-term, specifically impact loss of income caused by the extreme drought 2013 for agriculture, forestry and fishery in Phu Yen Province, Central Vietnam. The study valued economic damage by applying the synthetic control method (SCM), which is a statistical method to evaluate the effect of an intervention (e.g. natural disasters) in different case studies. It estimates what would have happened to the treatment group if it had not received the treatment by constructing a weighted combination of control units (e.g. control provinces). The results showed that the 2013 drought caused a decrease in income per capita, mainly in the agriculture, forestry, and fishery sector in Phu Yen. The reduced income was estimated to be VND 160,000 (1 USD = 23,500 VND (2021)) for one person per month, accounting for 11% of total income per capita and continued to affect the income 6 years later. Therefore, authorities need to invest in preventive solutions such as early and accurate warnings to help people to be more proactive in disaster prevention.

Frequency Analysis of Meteorologic Drought Indices using Boundary Kernel Density Function (경계핵밀도함수를 이용한 기상학적 가뭄지수의 빈도해석)

  • Oh, Tae Suk;Moon, Young-Il;Kim, Seong Sil;Park, Gu Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.87-98
    • /
    • 2011
  • Recently, occurrence frequency of extreme events like flood and drought is increasing due to climate change by global warming. Especially, a drought is more severer than other hydrologic disasters because it causes continuous damage through long period. But, ironically, it is difficult to recognize the importance and seriousness of droughts because droughts occur for a long stretch of time unlike flood. So as to analyze occurrence of droughts and prepare a countermeasure, this study analyzed a meteorologic drought among many kinds of drought that it is closely related with precipitation. Palmer Drought Severity Index, Standard Precipitation and Effective Drought Index are computed using precipitation and temperature material observed by Korean Meteorological Administration. With the result of comparative analysis of computed drought indices, Effective Drought Index is selected to execute frequency analysis because it is accordant to past droughts and has advantage to compute daily indices. A Frequency analysis of Effective Drought Index was executed using boundary kernel density function. In the result of analysis, occurrence periods of spring showed about between 10 year and 20 year, it implies that droughts of spring are more frequent than other seasons. And severity and occurrence period of droughts varied in different regions as occurrence periods of the Youngnam region and the southern coast of Korea are relatively shorter than other regions.

Hydrological Drought Analysis and Monitoring Using Multiple Drought Indices: The Case of Mulrocheon Watershed (수문학적 가뭄감시 및 해석을 위한 다양한 가뭄지수 평가 -물로천 유역을 중심으로-)

  • Lee, Joo-Heon;Park, Seo-Yeon;Kim, Min Gyu;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.477-484
    • /
    • 2021
  • Due to climate change, parts of Korea are experiencing large and small droughts every 2-3 years and extreme droughts every 7 years. Since most droughts occur mainly in areas where small water supply facilities in the tributaries or upstream are located, more research on technology for securing water in these areas is required. In this study, a drought evaluation using SPEI (Standardized Precipitation Evapotranspiration Index), SDI (Streamflow Drought Index), and WBDI (Water Budget-based Drought Index) was performed to investigate hydrological drought in the Mulrocheon watershed of Chuncheon, a vulnerable area in terms of water supply. As a result of calculating hydrological drought indices SPEI and SDI, examining each duration, it was confirmed that the common drought in 2014 did not recover and continued until 2015. In the hydrological drought index evaluation result by WBDI, a very severe drought condition was observed in the spring of 2015 following 2014, and that drought was the most severe at -1.94 in November 2017. As a result of deriving a SDF (Severity-Duration-Frequency) curve through frequency analysis by duration using the drought index calculated on a monthly basis from 2003 to 2019 (17 years), most droughts in the Mulrocheon watershed were found to have a return period of less than 10 years, but droughts that occurred in 2014, 2015, and 2019 were found to cover more than 20 years, respectively.

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Spatial and Temporal Analysis of Drought Using the Storage Data of Agricultural Reservoirs in Chungnam Province in 2015 (농업용 저수지 저수율을 이용한 충남지역 2015년 가뭄 분석)

  • Kim, Sorae;Jang, Min-Won;Kim, Soojin;Bae, Seungjong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The objective of this study was to analyze the temporal and spatial characteristics of agricultural drought by tracking the daily reservoir storage in Chungnam province. All daily records of the percent of reservoir storage from 2000 to 2015 were collected for 130 irrigation reservoirs from the RIMS (Rural Infrastructure Management System). The temporal change of province-wide average reservoir storage and the statistics showed that the annual average and minimum percent of reservoir storage in 2015 were extremely low like as those in the historical drought years of 2001 and 2012. The minimum reservoir storage on record was a 41 % at the end of September and remained far less than its historical average even until the end of the year. Furthermore, the annual average reservoir storage (68.3 %) recorded the lowest on record since 2000. In addition, about half of 130 major irrigation reservoirs in Chungnam fell into the risk of water shortage below 30 % full, and, in terms of annual minimum reservoir storage, the 79 reservoirs yielded lower storage in 2015 comparing with the measured in another drought year, 2001. On the other hand, irrigation reservoirs of comparatively worse storage condition revealed to be mostly located on the inside, such as Cheongyang-gun and Hongsung-gun. Conclusively, the low reservoir storage, still far below average even on December 2015, induced a serious concern about that more extreme drought would happen in the next spring.

Performance of Three Warm Season Turfgrasses under Linear Gradient Irrigation

  • Ow, Lai Fern;Ghosh, Subhadip
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • The appropriate level of irrigation for turfgrasses is vital to the performance of the turfgrass as well as conservation of water. Linear gradient irrigation system (LGIS) facilitates long-term study of turf performance under continuous irrigation gradients at extreme ends of the irrigation scale. The objectives of this study were to: a) determine the minimum irrigation requirements and relative drought resistance in three warm season turfgrasses; and b) evaluate the medium to long-term effects of irrigation levels on turf persistence, weed invasion, and susceptibility to diseases. Results suggest that grasses differed in drought resistance and persistence under variable irrigation regimes. Irrigation (Ep) required for consistent acceptable turf quality for respective grasses was Cynodon dactylon x C. transvaalensis (61%), Zoysia matrella L. Merr (73%), and Stenotaphrum secundatum 'Palmetto' (86%). Brown patch infection was most prevalent in Stenotaphrum secundatum 'Palmetto' at 12 and 125% Ep irrigation. Cynodon dactylon x C. transvaalensis and Zoysia matrella L. Merr were better able to adapt to the various irrigation regimes, and this ability allowed these species to resist drought, and maintain turf coverage which in turn, kept weeds and the occurrence of diseases at bay. Ranking these grasses for their drought tolerance abilities showed that Cynodon dactylon x C. transvaalensis had the most outstanding resistance against drought, followed by Zoysia matrella L. Merr, and lastly, Stenotaphrum secundatum 'Palmetto'. Despite having the highest irrigation requirement, Stenotaphrum secundatum 'Palmetto' was still not able to maintain persistence at high irrigation regimes. Likewise, this grass also lost turf coverage at low irrigation levels.

Regional Drought Assessment Considering Climate Change and Relationship with Agricultural Water in Jeju Island (기후변화를 고려한 제주지역의 권역별 가뭄 평가 및 농업용수에의 영향 고찰)

  • Song, Sung-Ho;Yoo, Seung-Hwan;Bae, Seung-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.625-638
    • /
    • 2013
  • Recently, the occurrences of droughts have been increased because of global warming and climate change. Water resources that mostly rely on groundwater are particularly vulnerable to the impact of precipitation variation, one of the major elements of climate change, are very sensitive to changes in the seasonal distribution as well as the average annual change in the viewpoint of agricultural activity. In this study, the status of drought for the present and future on Jeju Island which entirely rely on groundwater using SPI and PDSI were analyzed considering regional distribution of crops in terms of land use and fluctuation of water demand. The results showed that the precipitation distribution in Jeju Island is changed in intensity as well as seasonal variation of extreme events and the amount increase of precipitation during the dry season in the spring and fall indicated that agricultural water demand and supply policies would be considered by regional characteristics, especially the western region with largest market garden crops. Regarding the simulated future drought, the drought would be mitigated in the SPI method because of considering total rainfall only excluding intensity variation, while more intensified in the PDSI because it considers the evapotranspiration as well as rainfall as time passed. Moreover, the drought in the northern and western regions is getting worse than in the southern region so that the establishment of regional customized policies for water supply in Jeju Island is needed.

Evaluation of Economic Effects of Agricultural Drought Using CGE Model - Focus on Rice Productivity - (CGE 모형을 활용한 농업 가뭄의 직간접적 파급효과 계측 - 쌀 생산성을 중심으로 -)

  • Kim, Hyeon-Woong;Sung, Jae-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.93-104
    • /
    • 2022
  • Agriculture is one of the most vulnerable sector to droughts, and drought damage on the agriculture sector could have effects on other sector. Droughts have different characteristics compared to other extreme events, which means more sophisticated methods considering the characteristics of droughts are required when measuring their damage. The purpose of this study is to analyze the damage of droughts based on limited computational general equilibrium model. To be specific, we constructed a CGE model focusing on the agriculture sector in Korea. Also, to limit changes in land use and labor, we limited them, and assume droughts only have effects on productivity of value-added. Lastly, we simulate drought effects on rice production in Korea based on several climate scenarios and GCM to identify the economic effects of droughts. The results show that 1) the cumulated damage of droughts during 2021~2040 is higher than other periods (2040~2061, 2081~2100), 2) the correlation between the damage of droughts and SSP scenarios is insignificant. This result implies the necessity of the effective drought risk management to prevent future droughts effects, irrespective of mitigation policies. 3) Due to increases in rice price, GDP of rice sector is increased. However, GDP of the other sector and consumer welfare are decreased. This result show that indirect effects of droughts would be more important when measuring drought effects on agriculture sector.