• Title/Summary/Keyword: Extreme drought

Search Result 159, Processing Time 0.026 seconds

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.

Enhancement of flood stress tolerance for upland-adapted cereal crops by the close mixed-planting with rice

  • Iijima, Morio;Awala, Simon K;Hirooka, Yoshihiro;Yamane, Koji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.44-44
    • /
    • 2017
  • Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, the roots of wetland crops may supply $O_2$ to the roots of upland crops by a series of experiments conducted in both humid Japan and semi-arid Namibia (See Iijima et al, 2016 and Awala et al, 2016). Firstly, flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory experiments in Japan. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems, hereinafter referred to "close mixed-planting". This technique improved the photosynthetic and transpiration rates of the upland crops subjected to flood stress ($O_2$-deficient nutrient culture). Oxygen transfer was suggested between the two plants mix-cultured in water, implying its contribution to the phenomenon that improved the physiological status of upland crops under the simulated flood stress. Secondly, we further tested whether this phenomenon would be expressed under field flood conditions. The effects of close mixed-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015-2015/2016. Single-stand and mixed plant treatments were subjected to 11-22 day flood stress at the vegetative growth stage. Close Mixed-planting increased seedling survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet-rice and sorghum-rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet or sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding. Mixed cropping of wet and dryland crops is a new concept to overcome flood stress under variable environmental conditions.

  • PDF

Evaluation of hydropower dam water supply capacity (I): individual and integrated operation of hydropower dams in Bukhan river (발전용댐 이수능력 평가 연구(I): 북한강수계 개별 댐 및 댐군 용수공급능력 분석)

  • Jeong, Gimoon;Choi, Jeongwook;Kang, Doosun;Ahn, Jeonghwan;Kim, Taesoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.505-513
    • /
    • 2022
  • Recently, uncertainty in predicting available water resources is gradually increasing due to climate change and extreme weather conditions. Social interest in water management such as flood and drought prevention is also increasing, and after the unification of water management implemented in 2018, domestic water management is facing a major turning point. As part of such strengthening of water management capabilities, various studies are being conducted to utilize a hydropower dam for flood control and water supply purposes, which was mainly operated for hydroelectric power generation. However, since the dam evaluation methods developed based on a multi-purpose dam are being applied to hydropower dams, an additional evaluation approach that can consider the characteristics of hydropower dams is required. In this study, a new water supply capacity evaluation method is presented in consideration of the operational characteristics of hydropower dams in terms of water supply, and a connected reservoir simulation method is proposed to evaluate the comprehensive water supply capacity of a dam group operating in a river basin. The presented method was applied to the hydropower dams located in the Bukhan River basin, and the results of the water supply yield of individual dams and multi-reservoir systems were compared and analyzed. In the future, the role of hydropower dams for water supply during drought is expected to become more important, and this study can be used for sustainable domestic water management research using hydropower dams.

Risk Assessment of Pine Tree Dieback in Uljin and Bonghwa (울진·봉화 일대 금강소나무 고사 피해 특성 분석)

  • Eun-Sook Kim;Kiwoong Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.117-128
    • /
    • 2023
  • Tree dieback in Geumgang pine forest has occurred in Uljin and Bonghwa since the 2010s. In order to identify status of tree dieback and prevent further damages, a monitoring project for tree dieback in Geumgang pine forest had been launched by Southern regional office of forest service in 2020. This study was conducted to understand the characteristics of tree dieback occurrence and assess the high risk areas using the occurrence data in the project. Pine tree dieback occurred frequently in areas with mountain ridges in high elevation, dry south-facing slopes, mature stands, and high temperature rise in winter. Furthermore, the result of risk assessment showed that 6.2 percent(5,294ha) of Geumgang pine forest(85,000 ha) in total study area are at high risk of tree dieback. As the pine trees in the high risk area are prone to experience the dieback due to temperature and drought-related extreme weather events, regular forest management activities are needed to reduce the drought stress of pine trees. Forest health management for the pine forest with high protection priority can be also useful strategy to counter the risk of decline. This results can be used as the basic information for the adaptive forest management to climate change.

Changes in the Spatiotemporal Patterns of Precipitation Due to Climate Change (기후변화에 따른 강수량의 시공간적 발생 패턴의 변화 분석)

  • Kim, Dae-Jun;Kang, DaeGyoon;Park, Joo-Hyeon;Kim, Jin-Hee;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.424-433
    • /
    • 2021
  • Recent climate change has caused abnormal weather phenomena all over the world and a lot of damage in many fields of society. Particularly, a lot of recent damages were due to extreme precipitation, such as torrential downpour or drought. The objective of this study was to analyze the temporal and spatial changes in the precipitation pattern in South Korea. To achieve this objective, this study selected some of the precipitation indices suggested in previous studies to compare the temporal characteristics of precipitation induced by climate change. This study selected ten ASOS observatories of the Korea Meteorological Administration to understand the change over time for each location with considering regional distribution. This study also collected daily cumulative precipitation from 1951 to 2020 for each point. Additionally, this study generated high-resolution national daily precipitation distribution maps using an orographic precipitation model from 1981 to 2020 and analyzed them. Temporal analysis showed that although annual cumulative precipitation revealed an increasing trend from the past to the present. The number of precipitation days showed a decreasing trend at most observation points, but the number of torrential downpour days revealed an increasing trend. Spatially, the number of precipitation days and the number of torrential downpour days decreased in many areas over time, and this pattern was prominent in the central region. The precipitation pattern of South Korea can be summarized as the fewer precipitation days and larger daily precipitation over time.

Regional Optimization of Forest Fire Danger Index (FFDI) and its Application to 2022 North Korea Wildfires (산불위험지수 지역최적화를 통한 2022년 북한산불 사례분석)

  • Youn, Youjeong;Kim, Seoyeon;Choi, Soyeon;Park, Ganghyun;Kang, Jonggu;Kim, Geunah;Kwon, Chunguen;Seo, Kyungwon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1847-1859
    • /
    • 2022
  • Wildfires in North Korea can have a directly or indirectly affect South Korea if they go south to the Demilitarized Zone. Therefore, this study calculates the regional optimized Forest Fire Danger Index (FFDI) based on Local Data Assessment and Prediction System (LDAPS) weather data to obtain forest fire risk in North Korea, and applied it to the cases in Goseong-gun and Cheorwon-gun, North Korea in April 2022. As a result, the suitability was confirmed as the FFDI at the time of ignition corresponded to the risk class Extreme and Severe sections, respectively. In addition, a qualitative comparison of the risk map and the soil moisture map before and after the wildfire, the correlation was grasped. A new forest fire risk index that combines drought factors such as soil moisture, Standardized Precipitation Index (SPI), and Normalized Difference Water Index (NDWI) will be needed in the future.

Remote Sensing and GIS for Earth & Environmental Disasters: The Current and Future in Monitoring, Assessment, and Management 2 (원격탐사와 GIS를 이용한 지구환경재해 관측과 관리 기술 현황 2)

  • Yang, Minjune;Kim, Jae-Jin;Ryu, Jong-Sik;Han, Kyung-soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.811-818
    • /
    • 2022
  • Recently, the number of natural and environmental disasters is rapidly increasing due to extreme weather caused by climate change, and the scale of economic losses and damage to human life is increasing accordingly. In addition, with urbanization and industrialization, the characteristics and scale of extreme weather appearance are becoming more complex and large in different ways from the past, and need for remote sensing and artificial intelligence technology for responding and managing global environmental disasters. This special issue investigates environmental disaster observation and management research using remote sensing and artificial intelligence technology, and introduces the results of disaster-related studies such as drought, flood, air pollution, and marine pollution, etc. in South Korea performed by the i-SEED (School of Integrated Science for Sustainable Earth and Environmental Disaster at Pukyong National University). In this special issue, we expect that the results can contribute to the development of monitoring and management technologies that may prevent environmental disasters and reduce damage in advance.

Hydrologic Regime Alteration Analysis of the Multi-Purpose Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 다목적댐의 유량변화 분석)

  • Park, Bong-Jin;Kang, Ki-Ho;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.711-723
    • /
    • 2008
  • In this study, Hydrologic regime alterations(magnitude, magnitude and duration of annual extreme, frequency and duration of high and low pulse, rate and frequency of water condition changes, Range of Variability Approach) were analyzed by using Indicators of Hydrologic Alterations at the 11 major multi-purpose dam. The analysis result of the magnitude of monthly water conditions during drought season, inflow was $6.38m^3/sec{\sim}39.84m^3/sec$ and outflow was $20.36m^3/sec{\sim}49.43m^3/sec$, was increased $1.84%{\sim}200.98%$. The analysis result of the magnitude of monthly water conditions during flood season, inflow was from $79.06m^3/sec{\sim}137.12m^3/sec$ and outflow was from $65.32m^3/sec{\sim}80.16m^3/sec$, was decreased from $18.19%{\sim}40.39%$. The analysis result of the magnitude and duration of annual extreme, 1-day minimum was increased $82.86%{\sim}2,950%$, but 1-day maximum was decreased $34.78%{\sim}83.96%$. The analysis result of the frequency and duration of high and low pulse, low pulse count was decreased $29.67%{\sim}99.07%$ and high pulse count was also decreased $4.6%{\sim}92.35%$ after dam operation. Hydrograph rise rate was decreased $15.84%{\sim}79.31%$ and fall rate was $1.97%{\sim}107.10%$. RVA of 1-day minimum was increased $0.60{\sim}2.67$, also RVA of 1-day maximum was decreased $0.50{\sim}1.00$.

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

Seasonal and Inter-annual Variations of Lake Surface Area of Orog Lake in Gobi, Mongolia During 2000-2010

  • Yang, Hee-Jae;Lee, Eun-Hye;Do, Na-Young;Ko, Dong-Wook;Kang, Sin-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.267-276
    • /
    • 2012
  • Terminal lakes are widely distributed in the arid and semi-arid Gobi of Mongolia, and serves as important water resource for local people and livestock. However, such lakes are subject to great fluctuations in its size depending on climatic conditions and human water utilization. The Orog Lake is one such example that has shown remarkable fluctuation in recent years. In this study, we investigated the temporal changes of Orog Lake surface area by using 16-day MODIS 250 m NDVI products from 2000 to 2010. The results were compared with climate variability represented by monthly precipitation and temperature. Our results show that the Orog Lake gradually shrank for the period from 2000 to 2010, but with a significant range of seasonal and inter-annual variability. The lake area showed considerable seasonal variations, as it expanded in spring and fall, primarily due to snow melt and summer precipitation, respectively. Extreme drought period from 2000 to 2002 triggered the substantial reduction in lake area, leading to dry-up in year 2005, 2006, 2007, and 2009. After dry-up once occurred in 2005, the lake repeated reappearance and disappearance depending on seasonal and annual precipitation. Our findings implicate that the ground water fluctuated around the lake bottom level since 2005. This suggests the highly vulnerable nature of Orog lake, which greatly depends on future precipitation change.