DOI QR코드

DOI QR Code

Risk Assessment of Pine Tree Dieback in Uljin and Bonghwa

울진·봉화 일대 금강소나무 고사 피해 특성 분석

  • Eun-Sook Kim (Division of Forest Ecology, National Institute of Forest Science) ;
  • Kiwoong Lee (Division of Forest Ecology, National Institute of Forest Science)
  • 김은숙 (국립산림과학원 산림생태연구과) ;
  • 이기웅 (국립산림과학원 산림생태연구과)
  • Received : 2023.01.30
  • Accepted : 2023.07.31
  • Published : 2023.09.30

Abstract

Tree dieback in Geumgang pine forest has occurred in Uljin and Bonghwa since the 2010s. In order to identify status of tree dieback and prevent further damages, a monitoring project for tree dieback in Geumgang pine forest had been launched by Southern regional office of forest service in 2020. This study was conducted to understand the characteristics of tree dieback occurrence and assess the high risk areas using the occurrence data in the project. Pine tree dieback occurred frequently in areas with mountain ridges in high elevation, dry south-facing slopes, mature stands, and high temperature rise in winter. Furthermore, the result of risk assessment showed that 6.2 percent(5,294ha) of Geumgang pine forest(85,000 ha) in total study area are at high risk of tree dieback. As the pine trees in the high risk area are prone to experience the dieback due to temperature and drought-related extreme weather events, regular forest management activities are needed to reduce the drought stress of pine trees. Forest health management for the pine forest with high protection priority can be also useful strategy to counter the risk of decline. This results can be used as the basic information for the adaptive forest management to climate change.

2010년대 이후, 보전·육성 가치가 높은 금강소나무 핵심 서식지인 봉화군과 울진군 일대에서 소나무 고사 현상이 발생하고 있다. 이에, 남부지방산림청에서는 금강소나무 군락지의 고사피해 현황 파악과 추가적인 병해충 피해 예방을 위해 2020년부터 금강소나무 고사목 발생 모니터링 사업을 수행하고 있다. 본 연구에서는 고사목 발생 모니터링 자료를 바탕으로 울진·봉화일대 금강소나무의 고사 피해발생 특성과 위험지역 분석을 수행하였다. 그 결과, 울진·봉화지역 금강소나무 고사목은 해발고도가 높은 산능선부위, 건조한 남쪽사면, 연령이 높은 임분, 겨울철 기온상승이 높은 지역에서 많이 발생한 특성을 보였다. 이러한 특성을 이용하여 전체 연구 대상지에 대한 고사목 발생 위험성 평가를 실시한 결과, 소나무림 약 85천ha 중 6.2%인 5,294 ha 임분이 고사발생 위험 특성을 보유하고 있는 것으로 평가되었다. 고사발생 위험지역에서는 고온 및 가뭄과 관련된 기후변화 이벤트가 발생할 경우 고사 피해가 실제로 발생 가능성이 높으므로 소나무의 생육 스트레스를 기본적으로 낮춰주기 위한 상시적인 산림관리 활동이 필요하며, 보호 우선순위가 높은 소나무 임분에 대한 우선적인 관리조치가 수행될 필요가 있다. 본 연구 결과는 이상기상 및 기후변화로 인해 피해 위험성이 높은 지역을 사전에 제시함으로써 기후변화 적응 산림관리 이행의 기초자료로 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 국립산림과학원 「환경변화 및 산림교란에 대응한 소나무림 보전·관리 전략 및 기술 개발 연구(No. FE0100-2019-05-2023)」의 지원에 의해 수행되었음.

References

  1. Aghai, M. M., Z. Khan, M. R. Joseph, A. M. Stoda, A. W. Sher, G. J. Ettl, and S. L. Doty, 2019: The effect of microbial endophyte consortia on Pseudotsuga menziesii and Thuja plicata survival, growth, and physiology across edaphic gradients. Frontiers in Microbiology 10, 1353.
  2. Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, 1984: Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
  3. Brix, H, 1979: Effects of plant water stress on photosynthesis and survival of four conifers. Canadian Journal of Forest Research 9, 160-165. https://doi.org/10.1139/x79-030
  4. Calev, A., C, Zoref, M. Tzukerman, Y. Moshe, E. Zangy, and Y. Osem, 2016: High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. European journal of forest research 135(3), 551-563. https://doi.org/10.1007/s10342-016-0954-y
  5. Chang, H., J. An, Y. Roh, and Y. Son, 2020: Experimental warming and drought treatments reduce physiological activities and increase mortality of Pinus koraiensis seedlings. Plant Ecology 221(7), 515-527. https://doi.org/10.1007/s11258-020-01030-3
  6. Cortes, C., and V. Vapnik, 1995: Support-vector networks. Machine Learning 20(3): 273.
  7. Cox, D.R., 1958: The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B(Methodological) 20(2), 215-242. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
  8. Gavinet, J., J. M. Ourcival, and J. M. Limousin, 2019: Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytologist 223(3), 1267-1279. https://doi.org/10.1111/nph.15860
  9. Jung, J.-K., Y. Nam, D. Kim, S.-H. Lee, J.-H. Lim, W. I. Choi, and E,-S, Kim, 2020: Tree-crown Defoliation caused by Outbreak of Forest Insect Pests in Korea during 2020. Korean Journal of Applied Entomology 59(4), 409-410. (in Korean with English abstract)
  10. Kim, E.-S., B. Lee, J. Kim, N. Cho, and J.-H. Kim. 2020a: Risk Assessment of Pine Tree Dieback in Sogwang-Ri, Uljin. Journal of Korean Society of Forest Science 109(3): 259-270. (in Korean with English abstract)
  11. Kim, E. S., J.-H. Lim, B. Lee, G. C. Chang, H. M. Yang, S. H. Yoon, K. W. Lee, H. W. Kim, and J. Y. Lee, 2020b: Forest Damages by Extreme Weather and Climate Change. National Institute of Forest Science, 150pp.
  12. Kim, J., E. S. Kim, and J. H. Lim, 2017: Topographic and Meteorological Characteristics of Pinus densiflora Tree Dieback in Sogwang-Ri, Uljin. Korean Journal of Agricultural and Forest Meteorology 19(1), 10-18. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2017.19.1.10
  13. Kim, M.-K., M.-S. Han, D.-H. Jang, S.-G. Baek, W.-S. Lee, Y.-H. Kim, and S. Kim, 2012a: Production technique of observation grid data of 1km resolution, Journal of Climate Research 7(1), 55-68. (in Korean with English abstract)
  14. Kim, S. B., H. J. Shin, R. Ha, and S. J. Kim, 2012b: Spatio-temporal Analysis of Snowfall for 5 Heavy Snowfall Areas in South Korea. Journal of the Korean Society of Civil Engineers 32(2B), 103-111. (in Korean with English abstract)
  15. KMA. 2018. Korean Climate Change Assessment Report 2020: The Physical Science Basis. Korea Meteorological Administration, 334pp.
  16. Lawlor, D. W., and G. Cornic, 2002: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment 25(2), 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  17. Lee, K., B. Lee, N. Cho, J.-H. Lim, and E.-S. Kim, 2022a: Analysis of water use strategies of two co-occurring mature tree species, Pinus densiflora and Quercus serrata. Journal of Korean Society of Forest Science 111(3), 385-393. (in Korean with English abstract)
  18. Lee, S., and S. Rhyu. 2003: Impacts of Global Temperature Rise on the Change of Snowfall in Korea. Journal of the Korean Geographical Society 38(4), 463-477.
  19. Lee, S.-J., D.-B. Shin, A. Lee, J. Song, C.-H. Lim, and S.-H. Oh, 2022b: Analysis of Characteristics of Pinus Densiflora Dieback and Prediction of Dangerous Areas by Comparing Ensemble Model and MaxEnt - Focused on Wangpicheon Valley Ecological and Scenery Conservation Area in Uljin, Korea. Proceedings of Korean Society of Environment and Ecology Conference 32(2), 49. (in Korean with English abstract).
  20. Martin-Benito, D., K. J. Anchukaitis, M. N. Evans, M. Del Rio, H. Beeckman, and I. Canellas, 2017: Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species. Forests 8(9), 332.
  21. McDowell, N., J. R. Brooks, S. A. Fitzgerald, and B. J. Bond, 2003: Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant, Cell & Environment 26(4), 631-644. https://doi.org/10.1046/j.1365-3040.2003.00999.x
  22. NIMS. 2022: Climate Change Prospects Report in South Korea. National Institute of Meteorological Science, 58pp.
  23. South Regional Office of Forest Service, 2020: Tree Dieback Monitoring Report of Geumgang pine forest, 99pp.
  24. Unterscheutz, P., W. Ruetz, R. Geppert, and W. Ferrell, 1974: The effect of age, pre-conditioning, and water stress on the transpiration rates of Douglas-fir(Pseudotsuga menziesii) seedlings of several ecotypes. Physiological Plantarum 32, 214-221. https://doi.org/10.1111/j.1399-3054.1974.tb03125.x
  25. Warren, C.R., N. Livingsston, and D. Turpin, 2004: Water stress decreases the transfer conductance of Douglas-fir(Pseudotsuga menziesii) seedlings. Tree Physiology 24, 971-979. https://doi.org/10.1093/treephys/24.9.971