• 제목/요약/키워드: Extreme climate change

검색결과 385건 처리시간 0.022초

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

기후변화에 대한 풍속과 일조시간의 콘크리트 염화물확산 저항성의 성능중심평가 (Performance Based Evaluation of Concrete Chloride Diffusion Resistance from Wind Speed-Sunlight Exposure Time Curing Conditions of Climate Change)

  • 김태균;조철민;최지훈;김장호
    • 콘크리트학회논문집
    • /
    • 제28권5호
    • /
    • pp.601-609
    • /
    • 2016
  • 최근 국내의 경우 폭염, 폭우, 한파, 폭설, 태풍과 같은 기후변화가 심각하게 발생하고 있다. 이러한 극심한 기후변화로 인하여 건설현장에서 구조물의 공사 진행기간이 연장되어 그로 인한 경제적 손실을 초래하고, 기후변화를 고려하지 못한 상황에서 무리한 시공을 하여 콘크리트의 품질저하로 인해 부실시공의 원인이 되고 있는 실정이며 이로 인하여 인명피해와 재산피해도 발생한다. 따라서 본 연구에서는 이러한 문제점들을 해결하고 기후변화 대응책을 마련하기 위하여 콘크리트 구조물에 영향을 미치는 다양한 기후인자들 중 가장 중요한 풍속과 일조시간 경화조건을 선정하여 콘크리트 구조물의 양생과 내구성 영향을 검토해 보았다. 또한 실험결과를 분석하는 방법으로는 만족도 곡선 작성방법을 사용하여 콘크리트 강도와 내구성능에 관한 성능중심형평가(PBE: Performance Based Evaluation)절차를 제시하고 하고자 한다.

신평년(1991~2020년)에 기반한 우리나라 최근 기후특성과 변화에 관한 연구 (The Recent Climatic Characteristic and Change in the Republic of Korea based on the New Normals (1991~2020))

  • 최홍준;김정용;최영은;허인혜;이태민;김소정;민숙주;이도영;최다솜;성현민;권재일
    • 대기
    • /
    • 제33권5호
    • /
    • pp.477-492
    • /
    • 2023
  • Based on the new climate normals (1991~2020), annual mean, maximum and minimum temperature is 12.5℃, 18.2℃, and 7.7℃, respectively while annual precipitation is 1,331.7 mm, the annual mean wind speed is 2.0 m s-1, and the relative humidity is 67.8% in the Republic of Korea. Compared to 1981~2010 normal, annual mean temperature increased by 0.2℃, maximum and minimum temperatures increased by 0.3℃, while the amount of precipitation (0.7%) and relative humidity (1.1%) decreased. There was no distinct change in annual mean wind speed. The spatial range of the annual mean temperature in the new normals is large from 7.1 to 16.9℃. Annual precipitation showed a high regional variability, ranging from 787.3 to 2,030.0 mm. The annual mean relative humidity decreased at most weather stations due to the rise in temperature, and the annual mean wind speed did not show any distinct difference between the new and old normals. With the addition of a warmer decade (2011~2020), temperatures all increased consistently and in particular, the increase in the maximum temperature, which had not significantly changed in previous decades, was evident. The increasing trend of annual and summer precipitation by the 2010s has disappeared in the new normals. Among extreme climate indices, MxT30 (Daily maximum temperature ≥ 33℃ days), MnT25 (Daily minimum temperature ≥ 25℃ days), and PH30 (1 hour maximum precipitation ≥ 30 mm days) increased while MnT-10 (Daily minimum temperature < -10℃ days) and W13.9 (Daily maximum wind speed ≥ 13.9 m/s days) decreased at a statistically significant level. It is thought that a detailed study on the different trends of climate elements and extreme climate indices by region should be conducted in the future.

사용자 중심의 기후변화 시나리오 상세화 기법 개발 및 한반도 적용 (User-Centered Climate Change Scenarios Technique Development and Application of Korean Peninsula)

  • 조재필;정임국;조원일;황세운
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.13-29
    • /
    • 2018
  • This study presented evaluation procedure for selecting appropriate GCMs and downscaling method by focusing on the climate extreme indices suitable for climate change adaptation. The procedure includes six stages of processes as follows: 1) exclusion of unsuitable GCM through raw GCM analysis before bias correction; 2) calculation of the climate extreme indices and selection of downscaling method by evaluating reproducibility for the past and distortion rate for the future period; 3) selection of downscaling method based on evaluation of reproducibility of spatial correlation among weather stations; and 4) MME calculation using weight factors and evaluation of uncertainty range depending on number of GCMs. The presented procedure was applied to 60 weather stations where there are observed data for the past 30 year period on Korea Peninsula. First, 22 GCMs were selected through the evaluation of the spatio-temporal reproducibility of 29 GCMs. Between Simple Quantile Mapping (SQM) and Spatial Disaggregation Quantile Delta Mapping (SDQDM) methods, SQM was selected based on the reproducibility of 27 climate extreme indices for the past and reproducibility evaluation of spatial correlation in precipitation and temperature. Total precipitation (prcptot) and annual 1-day maximum precipitation (rx1day), which is respectively related to water supply and floods, were selected and MME-based future projections were estimated for near-future (2010-2039), the mid-future (2040-2069), and the far-future (2070-2099) based on the weight factors by GCM. The prcptot and rx1day increased as time goes farther from the near-future to the far-future and RCP 8.5 showed a higher rate of increase in both indices compared to RCP 4.5 scenario. It was also found that use of 20 GCM out of 22 explains 80% of the overall variation in all combinations of RCP scenarios and future periods. The result of this study is an example of an application in Korea Peninsula and APCC Integrated Modeling Solution (AIMS) can be utilized in various areas and fields if users want to apply the proposed procedure directly to a target area.

기후변화에 따른 북서태평양에서의 미래 파랑 전망 (Projection of the Future Wave Climate Changes Over the Western North Pacific)

  • 박종숙;강기룡;강현석;김영화
    • 한국해안·해양공학회논문집
    • /
    • 제25권5호
    • /
    • pp.267-275
    • /
    • 2013
  • HadGEM2-AO 기후모델의 기후변화 시나리오 자료와 파랑 모델을 이용하여 기후변화에 따른 북서태평양에서의 미래 파랑 기후를 전망하였다. 21세기말 북서태평양에서 연 평균 풍속이 현재보다 낮아질 것으로 전망됨에 따라 연 평균 유의파고도 낮게 전망되었다. 현재 기후에 비해서 21세기 말 연평균 유의파고는 RCP4.5 시나리오의 경우 2~7% 감소하고, RCP8.5의 경우 4~11% 정도 감소하는 것으로 나타났다. 극한파랑의 경우도 유의파고 및 풍속이 현재에 비해서 감소할 것으로 전망되었다. 계절별로 분석한 결과 겨울철의 극한파랑은 연 극한 파랑과 비슷하게 감소하는 경향을 보인 반면, 여름철의 경우 북서태평양에서는 현재보다 증가할 것으로 나타나 미래에는 태풍의 강도가 강화 될 것으로 전망된다.

Non-stationary statistical modeling of extreme wind speed series with exposure correction

  • Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.129-146
    • /
    • 2018
  • Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.

2021년 7월 동해에서 발생한 극한 고온현상과 기작 (Record-breaking High Temperature in July 2021 over East Sea and Possible Mechanism)

  • 이강진;권민호;강현우
    • 대기
    • /
    • 제32권1호
    • /
    • pp.17-25
    • /
    • 2022
  • As climate change due to global warming continues to be accelerated, various extreme events become more intense, more likely to occur and longer-lasting on a much larger scale. Recent studies show that global warming acts as the primary driver of extreme events and that heat-related extreme events should be attributed to anthropogenic global warming. Among them, both terrestrial and marine heat waves are great concerns for human beings as well as ecosystems. Taking place around the world, one of those events appeared over East Sea in July 2021 with record-breaking high temperature. Meanwhile, climate condition around East Sea was favorable for anomalous warming with less total cloud cover, more incoming solar radiation, and shorter period of Changma rainfall. According to the results of wave activity flux analysis, highly activated meridional mode of teleconnection that links western North Pacific to East Asia caused localized warming over East Sea to become stronger.

대구와 제주의 폭염 및 열대야의 발생 특성 (The Occurrence Characteristic and Future Prospect of Extreme Heat and Tropical Night in Daegu and Jeju)

  • 김진아;김규랑;김백조
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1493-1500
    • /
    • 2015
  • Observation data (1981-2014) and climate change scenario data (historical: 1981-2005; RCP 2.6 and 8.5: 2006-2100) were used to analyze occurrence and future outlook of the extreme heat days and tropical nights in Daegu and Jeju. Then we compared the mortality and observations data (1993-2013). During 1981-2014, the average of extreme heat days (tropical nights) was 24.41 days (12.47 days) in Daegu, and 6.5 days (22.14 days) in Jeju. Extreme heat days and tropical nights have been similarly increased in Daegu, but tropical nights increased more than extreme heat days in Jeju. Extreme heat days and tropical nights in both, Daegu and Jeju showed high correlation with daily mortality, specifically Daegu's correlation was higher than that of jeju. The yearly increasing rate of extreme heat of the future (2076-2100) was 1.7-3.6 times and 7.8-37.7 times higher than the past (1981-2005) in Daegu and Jeju, respectively. The yearly increase rate of tropical nights of future was 2.6-5.0 times and 2.9-5.6 times higher in Daegu and Jeju, respectively. During 2006-2100 periods, the trend of extreme heat days was observed both in Daegu and Jeju. On the average, extreme heat days and tropical nights in Jeju increased more than that of Daegu. However, the trend of extreme heat days increase in Daegu was higher than that in Jeju, whereas, the trend of tropical nights in Jeju was higher than that in Daegu.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • 농업과학연구
    • /
    • 제48권2호
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

Impacts of Climate Change and Financial Support on Household Livelihoods: Evidence from the Northwest Sub-Region of Vietnam

  • DO, Thi Thu Hien;NGUYEN, Thi Lan Anh;NGUYEN, Thi Hoai Phuong
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권6호
    • /
    • pp.115-126
    • /
    • 2022
  • The study's goal is to determine the amount of climate change's impact on ethnic minority (EM) households' livelihoods, as well as their adaptability to climate change and long-term viability. The research was conducted in Vietnam's Northwestern Sub-region, where ethnic minorities account for more than half of the overall population. The study uses a combination of qualitative and quantitative methods based on a survey of 480 households in 04 provinces severely affected by climate change in the Northwest sub-region of Vietnam. The results show that: climate change (extreme weather events) occurs with increasing frequency, mainly affecting the life expectancy, health, and capital of households; Vulnerable groups (women, ethnic minorities) have a poor adaptive capacity and mainly suffer the consequences of shocks, are afraid to change their livelihoods; Microfinance plays an important role in enhancing the sustainability of livelihoods through increasing capital and financial assets and reducing the vulnerability of ethnic minority households. Finally, research has some solutions for microfinance - special credit specifically for ethnic minority households in the Northwest Sub-region: support for microfinance advice, home credit with transition orientations to adapt to climate change response and relieves its impact on the social lives.