• Title/Summary/Keyword: Extreme Values

Search Result 406, Processing Time 0.026 seconds

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

The Aesthetic Values of Formalism Art to Wear (형식주의 예술의상의 미적 가치)

  • 서승미;양숙희
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.1
    • /
    • pp.118-134
    • /
    • 2003
  • The first purpose of this study is to take a better look it the background of Formalism art in the cultural society and to examine the aesthetic value of the formative arts of formalism architecture that are ail basically founded upon the study of Formalism. Secondly, it analyzes the aesthetic value of Formalism Art to Wear, Which can be explained as a mixture of art and fashion, by investigate to the features of art history. The results are as follows; First, Formalism Art to Wear of Simultaneity does not represent continuance but simultaneous. In other words. inside the same time and place of dimension, events art visualized without transformation. Secondly, formalism Art to Wear of Geometrical Aesthetics deals with a purely genuine atmosphere that pursues absolute perfection, composed abstract of geometrical shapes. Thirdly, Fomarlism Art to Wear of Deformation breaks analysis from balance and symmetry showing extreme transformation nil new vitality. Fourthly, Formalism Art to Wear of Space Extension experiments with post-corporeality. Post-corporeality centers the human body extension that is open to various boundaries of implosion and electronic technologies, providing us with a new Cyborg of the digital body.

  • PDF

Fabrication of polycrystalline 3C-SiC diode for harsh environment micro chemical sensors and their characteristics (극한 환경 마이크로 화학센서용 다결정 3C-SiC 다이오드 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.195-196
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline 3C-SiC thin film diodes for extreme environment applications, in which the this thin film was deposited onto oxidized Si wafers by APCVD using HMDS In this work, the optimized growth temperature and HMDS flow rate were $1,100^{\circ}C$ and 8sccm, respectively. A Schottky diode with a Au, Al/poly 3C-SiC/$SiO_2$/Si(n-type) structure was fabricated and its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84V, over 140V, 61nm, and $2.7{\times}10^{19}cm^2$, respectively. To produce good ohmic contact, Al/3C-SiC were annealed at 300, 400, and $500^{\circ}C$ for 30min under a vacuum of $5.0{\times}10^{-6}$Torr. The obtained p-n junction diode fabricated by poly 3C-SiC had similar characteristics to a single 3C-SiC p-n junction diode.

  • PDF

Hydrological Studies on the best fitting distribution and probable minimum flow for the extreme values of discharge (極値流量의 最適分布型과 極値確率 流量에 關한 水文學的 硏究 -錦江流域의 渴水量을 中心으로-)

  • Lee, Soon-Hyuk;Han, Chung-Suck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.4
    • /
    • pp.108-117
    • /
    • 1979
  • In order to obtain the basic data for design of water structures which can be contributed to the planning of water use. Best fitted distribution function and the equations for the probable minimum flow were derived to the annual minimum flow of five subwatersheds along Geum River basin. The result were analyzed and summarized as follows. 1. Type III extremal distribution was considered as a best fit one among some other distributions such as exponential and two parameter lognormal distribution by $x^2$-goodness of fit test. 2. The minimum flow are analyzed by Type III extremal distribution which contains a shape parameter $\lambda$, a location parameter ${\beta}$ and a minimum drought $\gamma$. If a minimum drought $\gamma=0$, equations for the probable minimum flow, $D_T$, were derived as $D_T={\beta}e^{\lambda}1^{y'}$, with two parameters and as $D_T=\gamma+(\^{\beta}-\gamma)e^{{\lambda}y'}$ with three parameters in case of a minimum drought ${\gamma}>0$ respectively. 3. Probable minimum flow following the return periods for each stations were also obtained by above mentioned equations. Frequency curves for each station are drawn in the text. 4. Mathematical equation with three parameters is more suitable one than that of two parameters if much difference exist between the maximum and the minimum value among observed data.

  • PDF

Effects of the Particle Electric Conductivity on the Aggregation of Unipolar Charged Nanoparticles (단극하전 나노입자의 응집성장 과정에서 입자의 전기전도도의 효과에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2003
  • Effects of the electric conductivity of particles were studied for the aggregation process of charged particles with a Brownian dynamic simulation in the free molecular regime. A periodic boundary condition was used for the calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered two extreme cases, a perfect conductor and a perfect nonconductor. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was D$_{f}$= 1.761. However, the fractal dimension decreased from 1.694 to 1.360 for the case of the perfect conductor, and from 1.610 to 1.476 for the case of the perfect nonconductor, with the increase of the average number of charges on the primary particle from 0.2 to 0.3. These values were smaller than that of the centered charge case.e.

A Study on Textile Pattern Designs with Applied Korean Traditional Patterns - Focused on Optical Patterns - (한국전통문양을 응용한 텍스타일 패턴 디자인 연구 - 옵티컬 패턴(Optical Pattern)을 중심으로 -)

  • Byun, Young-Hee;Chae, Keum-Seok
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.5 no.1 s.12
    • /
    • pp.87-96
    • /
    • 2007
  • Patterns have their own shapes and characteristics as a symbol in accordance with in what environment they are like a language. Especially our ancestor had wished present values as like riches and honors, longevity and health, love and happiness through all kinds of patterns of animals, plants, the sun, the moon, cloud, water and mountain, and expressed an aesthetic consciousness. Pattern design is important in fashion but it is insufficient in terms of the development of modern patterns based on Korean traditional patterns. Therefore, We need to create new senses and thoughts through the understanding and re-analysis about Korean traditional costume and a study on optical patterns could give an extreme effect without any changes of silhouette. Especially, Emilio Pucci and Missoni have been developing a variety of Pattern designs even though there are different tendencies each other. Consequently it could be a good chance to show Korean images and originality that develope the various textile patterns with applying to Korean traditional patterns based on an analysis of their works.

  • PDF

Evaluation of Fatigue Strength by Graphite in Ductile Cast Iron (구상흑연주철재의 흑연에 의한 피로강도의 평가)

  • 이경모;윤명진;이종형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.214-221
    • /
    • 2003
  • In this study, based on the effect of the interaction of fracture mechanics by graphite and fatigue limit phenomena of the microscopic observation various matrix structure, spheroidal ratio, size of graphite and distribution etc. parameters containd with Ductile Cast Iron. Therefore, in this study, different ferrite-pearlite matrix structure and spheroidal ratio of graphite of 70%, 80% and 90%, GCD40, GCD45-1 and GCD45-2 series and three different ferrite-pearlite matrix structure, GCD 45-3, GCD 50, GCD 60 series, all of which contain more than 90% spheroidal ratio of graphite, were used to obtain the correlation between mean size of spheroidal graphite and fatigue strength. (1) 73% pearlite structure had the highest fatigue limitation while 36% pearlite structure had the lowest fatigue limitation among ferrite-pearlite matrix. the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 10%, distribution range of fatigue life was small in same stress level. (2) (equation omitted) of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of (equation omitted) may be used as a guideline for the control of inclusion size in the steelmaking processes.

A Study on the Comovement of Industry Default (산업 부도의 동조화 현상 연구)

  • Jeon, Haehyun;Kim, So-Yeun;Kim, Changki
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1289-1312
    • /
    • 2015
  • This paper studies the comovement of industry defaults among listed companies. Rank correlation coefficients of Spearman's ${\rho}$ and Kendall's ${\tau}$ measure the concordance of default. These non-parametric coefficients do not require distributional assumptions and are easily used even with less data and extreme values. This study predicts a future financial crisis by looking at the comovement of industry defaults. We expect our analyses will aid market participants (including company executives) in making investment or risk management decisions.

Characteristics of Photovoltaic I-V and P-V According to the Irradiation and Module Temperature (태양광 시스템의 일사량과 모듈온도에 따른 I-V 및 P-V 특성에 관한 연구)

  • Shin, Hyeon-Man;Li, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.339-346
    • /
    • 2009
  • Photovoltaic (PV) energy is a renewable and harmless energy which offers many advantages. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current and DC power vary with the irradiation and module temperature, it is necessary to study the characteristics of photovoltaic I-V and P-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V and P-V according to the irradiation and the module temperature. The results show that the DC current and the DC power of the photovoltaic system are increased along with the increasing values of irradiation and module temperature.

Control of Surface Energy using Bilayer Metallic Film Heterostructures

  • Kim, Chang-Lae;Kim, Dae-Eun;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.350-355
    • /
    • 2019
  • Surface energy is an important factor in determining the performance of application components in terms of preventing adhesion failure between thin films. In this regard, numerous attempts have been made to acquire the desired surface energy through chemical treatment or by using micro/nanostructures. However, such approaches are expected to provide extreme values of surface energy, which may not be suitable in achieving the enhanced performance of applications. In this study, we propose a method to control surface energy by using bilayer metallic film heterostructures. We measure the water contact angle of incompatible (Ni/Ag) and compatible (Zn/Ag) metal pairs under several experimental factors, including thickness, time, and temperature. Furthermore, we conduct Auger electron spectroscopy measurements to investigate the atomic concentration with respect to depth after the change in the water contact angle. The experimental results reveal that three parameters, namely, compatibility, film thickness, and environmental temperature, are major factors in controlling the water contact angle. Thus, we experimentally demonstrate that controlling these three parameters can provide the approximate desired water contact angle. This result is expected to aid in the performance enhancement of a wide range of application components, where control of surface energy is required.