In some case studies, the heavy precipitation events and rapid cyclogenesis in the extratropics can be caused by moist and warm tropical air masses. Tropical Moisture Exports (TME) correspond to the meridional transport of moist air masses, primarily born in tropical oceanic areas, to higher latitudes; and are closely related to flood events, especially in the mid-latitudes. The TME for the region of interest is mostly estimated by the back tracking approach using Lagrangian Analysis Tools (LAGRANTO) from ECMWF Re-Analysis (ERA) data. In this study, we aim to estimate the TME that are related to rainfall in Korea. The major moisture sources of the TME that contribute to heavy rainfall and extreme floods in Korea are identified. The TME is found to have significant connection with extreme events in Korea such as heavy rainfall and extreme flood events. The results show the most of the moisture sources comes from the west Pacific during the warm half of the year and it contributes significantly to the annual TME and is linked to the East Asian monsoon.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.857-865
/
2013
집중 호우로 인한 피해가 증가하면서 다양한 기법들을 이용하여 강우량 예측에 대한 관심이 높아졌다. 최근에는 극단분포를 활용하여 강우량을 예측하려는 시도가 늘고 있다. 본 연구에서는 일반화 극단 분포를 활용하여 실제 서울시의 1973년부터 2010년까지 7월달의 사후예측분포를 생성하고, 수치적인 계산을 위해서 MCMC (Markov chain Monte Carlo)알고리즘을 활용하였다. 이 연구를 통해서 사후예측분포의 점추정값들을 비교하였고 2011년 7월달의 자료와 비교해 봤을 때 집중 호우의 확률이 증가한 것을 알 수 있었다.
Hydro-meteorological extremes are trivial in these days. Therefore, it is important to identify extreme hydrological events in advance to mitigate the damage due to the extreme events. In this context, exploring temporal distribution of sub-daily extreme rainfall at multiple rain gauges would informative to identify different states to describe severity of the disaster. This study proposehidden Markov chain model (HMM) based rainfall analysis tool to understand the temporal sub-daily rainfall patterns over South Korea. Hourly and daily rainfall data between 1961 and 2017 for 92 stations were used for the study. HMM was applied to daily rainfall series to identify an observed hidden state associated with rainfall frequency and intensity, and further utilized the estimated hidden states to derive a temporal distribution of daily extreme rainfall. Transition between states over time was clearly identified, because HMM obviously identifies the temporal dependence in the daily rainfall states. The proposed HMM was very useful tool to derive the temporal attributes of the daily rainfall in South Korea. Further, daily rainfall series were disaggregated into sub-daily rainfall sequences based on the temporal distribution of hourly rainfall data.
Extreme rainfall has become more frequent over the Korean peninsula in recent years, causing serious damages. In a changing climate, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to overestimate (or underestimate) the design rainfalls. A main objective of this study is to develop a stochastic disaggregation method of seasonal rainfall to hourly extreme rainfall, and offer a way to derive the nonstationary IDF curves. In this study, we propose a novel approach based on a Four-Parameter Beta (4P-beta) distribution to estimate the nonstationary IDF curves conditioned on the observed (or simulated) seasonal rainfall, which becomes the time-varying upper bound of the 4P beta distribution. Moreover, this study employed a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters. The proposed model showed a comparable design rainfall to that of GEV distribution under the stationary assumption. As a nonstationary rainfall frequency model, the proposed model can effectively translate the seasonal variation into the sub-daily extreme rainfall.
Application of Hidden Markov Model (HMM) to the hydrological time series would be an innovative way to identify extreme rainfall events in a series. Even though the optimum number of hidden states can be identify based on maximizing the log-likelihood or minimizing Bayesian information criterion. However, occasionally value for the log-likelihood keep increasing with the state which gives false identification of the optimum hidden state. Therefore, this study attempts to identify optimum number of hidden states for Colombo station, Sri Lanka as fundamental approach to identify frequency and percentage of extreme rainfall events for the station. Colombo station consisted of daily rainfall values between 1961 and 2015. The representative station is located at the wet zone of Sri Lanka where the major rainfall season falls on May to September. Therefore, HMM was ran for the season of May to September between 1961 and 2015. Results showed more or less similar log-likelihood which could be identified as maximum for states between 4 to 7. Therefore, measure of central tendency (i.e. mean, median, mode, standard deviation, variance and auto-correlation) for observed and simulated daily rainfall series was carried to each state to identify optimum state which could give statistically compatible results. Further, the method was applied for the second major rainfall season (i.e. October to February) for the same station as a comparison.
본 연구에서는 호우의 변화경향을 유역별로 분석하였다. 이를 위해 한국을 6개의 유역으로 나누고 호우와 관련된 7개의 극한강수지수를 분석하여 변화지속성을 파악하였다. 호우량은 호우일수보다 증가경향이 더 지속적이다. 일강수량이 50mm 이상 강수일수와 95 퍼센타일 이상 강수량의 증가경향이 가장 지속적이다. 호우관련지수는 분석기간 동안 대부분 증가경향이지만 한강 유역, 낙동강 상류지역, 동해안 지역이 다른 유역에 비해 증가경향이 뚜렷하다. 금강 유역과 섬진강 유역은 호우의 증가경향이 통계적으로 유의하지 않고 변동성이 크다. 호우의 증가경향은 1970년대 중반 이후 한강과 낙동강 유역에서 지속적이지만 2000년대 중반 이후 증가경향이 지속적으로 나타나는 지점들이 감소한다. 이는 최근 호우의 빈도와 강도가 더욱 불규칙해지고 있음을 의미한다.
The characteristics of the rainfall events on the Korean peninsula have been investigated by means of regional and global observational data collected from 1954 to 2004 with an emphasis on extreme cases $80\;mm\;day^{-1}$. According to our analysis, long-term annual rainfall anomalies show an increasing trend. This trend is pronounced in the month of August, when both the amount of monthly rainfall and the frequency of extreme events increase significantly. Composite maps on August during the 8 wet years reveal warm SST anomalies over the eastern Philippine Sea which are associated with enhanced convection and vertical motion and intensified positive SLP over central Eurasia during August. The rainfall pattern suggests that the most significant increase in moisture supply over the southern parts of China and Korea in August is associated with positive SLP changes over Eurasia and negative SLP changes over the subtropical western Pacific off the east coast of south China. The frequent generation of typhoons over the warm eastern Philippine Sea and their tracks appear to influence the extreme rainfall events in Korea during the month of August. The typhoons in August mainly passed the western coast of Korea, resulting in the frequent occurrence of extreme rainfall events in this region. Furthermore, anomalous cyclonic circulations over the eastern Philippine Sea also promoted the generation of tropical cyclones. The position of pressure systems - positive SLP over Eurasia and negative SLP over the subtropical Pacific - in turn provided a pathway for typhoons. The moisture is then effectively transported further north toward Korea and east toward the southern parts of China during the extreme rainfall period.
전세계적으로 기상이변이 빈번하게 발생하면서 기후변화가 수문환경에 미치는 영향에 대한 연구가 활발히 진행되고 있다. 기후변화 연구에는 대체로 이산화탄소 배출 시나리오에 근거한 GCM 모의 결과가 사용되며, GCM 자료를 바탕으로 미래의 수문량 변화를 예측하는 방법으로 진행된다. 기후변화가 강우에 미치는 영향과 관련해서는 기후변화가 총강우량에 미치는 영향에 대한 연구가 주를 이뤄왔으나 극한강우량에 미치는 영향에 대한 연구는 미흡한 실정이다. 또한 상세화 된 강우 자료가 월단위 또는 일 단위이기 때문에 극한홍수량 산정에 필요한 시단위 극한강우량 추정에는 한계가 있다. 본 연구에서는 기후변화가 극한강우량에 미치는 영향을 분석하기 위해 A2 시나리오에 근거한 ECHO-G GCM 모델의 모의 결과를 상세화 시켜 얻은 한강 유역내의 9개 강우 관측 지점의 일강우 자료를 바탕으로 강우의 scale invariance 특성에 근거한 시단위 확률강우량을 추정하였고, NSRPM(Neymann-Scott Rectangular Pulse Model)을 적용하여 시단위 확률강우량을 추정하였다. 이러한 방법으로 추정된 9개 지점의 확률강우량과 한강유역종합치수계획(국토해양부, 2008)에서 산정한 확률강우량을 비교하여 미래의 확률강우량 변화를 분석하였다. 분석된 한강 유역 내 강우 관측 지점의 확률강우량 변화 추이는 지점에 따라, 미래기간에 따라 상이하게 나타났으나 대체로 scaling에 의한 결과가 관측값에 근거한 확률강우량보다 대체로 큰 값을 보였고, NSRPM에 의한 결과는 미래 기간에 따라 관측값보다 크거나 작은 값을 보였다.
극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.
Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.