본 연구는 간호사의 직무 스트레스와 자기효능감과의 관계를 규명하기 위하여 관련 연구의 동향을 고찰하고 텍스트 네트워크 분석을 시행하였다. 선행문헌고찰을 위하여 국내 3곳, 국외 1곳의 데이터베이스를 이용하여 '간호사', '스트레스', '자기효능감', 'nurse', 'stress', 'self-efficacy'를 주요 검색어로 검색하였다. 총 18편의 논문이 대상 문헌으로 선정되었다. 이중 9편의 연구에서 간호사의 직무 스트레스와 자기효능감 간에 통계적으로 유의한 음의 상관관계가 있음을 보고하였다. 그러나 도구의 선택에 있어 번안자에 따라 문항을 선택적으로 사용하여 상이한 결과가 도출되어 동일한 도구를 사용한 다른 논문들과의 비교 분석이 어려웠다. 또한, 18편 논문의 초록에서 키워드를 추출하여 텍스트 네트워크 분석을 시행하였다. 출현 빈도수가 가장 높은 단어는 직무스트레스였고, 이를 기준으로 관계를 분석하였을 때 출현 빈도수가 높은 주요어는 자기효능감, 의료기관, 상관성이었다. 해당 주요어간의 관계를 명확하게 하기 위해 한국형 도구 개발을 통한 영향요인 탐색 연구 수행을 제언한다.
사이버 공격을 예측하고 대응하기 위해서 수많은 보안 기업 회사에서는 공격기법의 특성, 수법 유형을 빠르게 파악하고, 이에 대한 Security Intelligence Report(SIR)들을 배포한다. 하지만 각 기업에서 배포하는 SIR들은 방대하며, 형식이 맞춰져 있지 않다. 본 논문은 대량의 비정형한 SIR들에서 정보를 추출하는데 소요되는 시간을 줄이고 효율적으로 파악하기 위해 SIR들에 대해 정형화하고 주요 정보를 추출하기 위해 5가지 분석기술이 적용된 프레임워크를 제안한다. SIR들의 데이터는 정답 라벨이 없기 때문에 비지도 학습방식을 통해 키워드 추출, 토픽 모델링, 문서 요약, 유사문서 검색 총 4가지 분석기술을 제안한다. 마지막으로 SIR들에서 위협 정보 추출하기 위해 데이터를 구축하였으며, 개체명 인식 기술에 적용하여 IP, Domain/URL, Hash, Malware에 속하는 단어를 인식하고 그 단어가 어떤 유형에 속하는지 판단하는 분석기술을 포함한 총 5가지 분석기술이 적용된 프레임워크를 제안한다.
본 연구는 피기백 화차운송 시스템의 특허문서를 활용하여 관련 분야의 유망기술을 파악하는 것을 목표로 한다. 이를 위해 피기백 운송 시스템의 선행연구 및 관련 보고서로 기술 키워드를 추출하여 특허문서를 추출한다. 추출된 특허문서에 텍스트마이닝 기법을 적용하여 빈도수가 높은 키워드를 확인하고 피기백 운송 시스템의 핵심기술의 토픽을 식별하기 위해 LDA(Latent Dirichlet Allocation) 알고리즘을 적용하였다. 마지막으로, 시계열 분석 기법인 ARIMA 모델을 핵심기술의 토픽에 적용하여 기술 추세를 예측하고 피기백 운송 시스템에 대한 유망한 기술을 식별하였다. 특허 분석 결과, 데이터 기반 통합관리 시스템과 운영 계획 시스템 그리고 복합수송 중 특수 화물(기체, 액체류) 운송 및 보관 기술이 미래에 유망한 핵심기술로 도출되었고, 데이터 송수신 및 분석 기술이 중요한 세부 기술임을 확인하였다. 제안된 분석 방법은 피기백 운송 시스템의 R&D 연구개발 전략 및 기술 로드맵을 개발하는 데 있어 충분한 자료가 될 수 있다.
본 연구는 빅데이터 분석을 이용하여 코로나19 전후의 3D가상패션에 대한 인식의 변화를 알아보기 위하여 코로나19 발생 전인 2017년 1월1일부터 발생 이후인 2022년 10월30일까지 소셜미디어 네이버, 다음, 구글, 유튜브에서 추출한 3D 가상패션 관련 주요 단어들을 대상으로 텍스톰을 이용하여 빅데이터 자료를 수집하였다. 수집된 단어는 정제 과정을 거친 후 워드클라우드, 단어의 빈도, 연결중심성, 네트워크 시각화와 CONCOR 분석을 실시하였다. 3D 가상패션을 키워드로 32,461개의 단어를 추출하여 분석한 결과 패션, 가상, 기술의 출현빈도와 중심성이 가장 높게 나타났으며 디지털, 디자인, 의상, 활용, 제조의 출현빈도도 높게 나타났다. 이를 통해 3D 가상패션이 기술의 발달과 더불어 산업 전반에 활용되고 있음을 알 수 있었다. 특히 코로나19 이후 가장 부각되는 주요 단어는 메타버스와 3D 교육으로서 패션산업에서의 요구도가 높게 나타나고 있다.
Within the worse of the environment, Climate change caused by global warming is becoming serious around the world, and green logistics to pursue sustainable development in the logistics sector are receiving more and more attention. Along with the acceleration of the global economy, eco-friendly issues are playing an increasingly important role in the logistics industry, and various policy measures are being pursued to establish the green logistics system. This study aims to analyze research trends in eco-friendly logistics, and the SNA methodology was applied by extracting keywords from 518 domestic and foreign papers from 2013 to August 2022. The period is divided into three stages: 2013-2015, 2016-2019, and 2020-2022, and 'logistics' and 'sustainable development' were derived as top logistics eco-friendly keywords at all stages. Besides, In the first stage(2013-2015), the term 'environmental performance' and 'freight transport' attracted the attention of scholars. In the second stage(2016-2019), keywords such as 'third-party logistics' and 'lean logistics' have attracted the attention of scholars. In the third stage(2020-2022), the 'internet of things' and 'circular economy' received the attention of scholars. In line with the growth of the economy, it was confirmed that research related to eco-friendly logistics is gradually expanding to a sustainable concept. Based on this study, it is possible to grasp the research trends of the academic community to cope with recent environmental changes and provides reference materials to consider future research directions.
지식과 정보산업이 경제의 주축인 지식기반 사회에 있어 지식의 공유와 확산 및 체계적인 관리는 국가 경쟁력 향상뿐만 아니라 지속 가능한 사회 발전의 필수 전략으로 인식되고 있다. 정보기술과 경영의 융합이 다양한 방식으로 일어나고 있는 정보시스템(Information Systems: IS) 연구분야에서, 연구자들이 서로 협력하여 오래된 지식을 과학적 지식네트워크의 관점에서 새로운 지식으로 만들어 낼 때 비로소 지식의 진화가 일어난다. 특히, 인용과 공저, 키워드와 같은 네트워크 기반의 학제적 접목을 통해 해당 연구분야의 관심 주제와 적용된 방법론, 연구동향 등을 파악함으로써 새로운 통찰을 이끌어낼 수 있다. 선행연구에서는 연구주제와 방법론, 공동저자 등의 관계를 밝혀 해당 커뮤니티의 지식체계 구조와 연구동향을 파악하려는 다양한 시도가 있어 왔으나, 두 개 이상의 저널을 일부 기간으로 한정해서 비교한 연구가 대부분을 차지하였으며, IS 연구의 전 역사를 아우르면서 연구동향을 살펴본 연구는 부족한 실정이다. 이에 본 연구에서는 IS 연구분야에서 관련 지식을 넓히는 데 주도적인 역할을 수행하고 있는 MIS Quarterly (MISQ) 저널을 중심으로 창간호(1977년)부터 최근(2022년 1분기)까지 게재된 모든 논문으로부터 (1) 키워드를 추출하고, (2) 추출된 키워드를 연구주제와 방법론, 이론 등으로 각각 구분한 후, (3) 토픽모델링과 키워드 네트워크 분석을 활용하여 IS 연구분야의 태동부터 현재까지의 변화 양상을 연대기적으로 파악하였다. 본 연구를 통해 MISQ에 게재된 IS 연구의 변화 양상을 살펴봄으로써, IS 연구분야의 발전 방향을 예측하고, IS 분야의 연구자들에게 새로운 연구방향을 제시하여 미래 지향적인 연구를 진행하는 데 실질적인 도움을 줄 수 있을 것으로 기대한다.
2020년 1월부터 2021년 10월 현재까지 COVID-19(치명적인 호흡기 증후군인 코로나바이러스-2)와 관련된 학술 연구가 500,000편 이상 발표되었다. COVID-19와 관련된 논문의 수가 급격하게 증가함에 따라 의료 전문가와 정책 담당자들이 중요한 연구를 신속하게 찾는 것에 시간적·기술적 제약이 따르고 있다. 따라서 본 연구에서는 LDA와 Word2vec 알고리즘을 사용하여 방대한 문헌의 텍스트 자료로부터 유용한 정보를 추출하는 방안을 제시한다. COVID-19와 관련된 논문에서 검색하고자 하는 키워드와 관련된 논문을 추출하고, 이를 대상으로 세부 주제를 파악하였다. 자료는 Kaggle에 있는 CORD-19 데이터 세트를 활용하였는데, COVID-19 전염병에 대응하기 위해 주요 연구 그룹과 백악관이 준비한 무료 학술 자료로서 매주 자료가 업데이트되고 있다. 연구 방법은 크게 두 가지로 나뉜다. 먼저, 47,110편의 학술 논문의 초록을 대상으로 LDA 토픽 모델링과 Word2vec 연관어 분석을 수행한 후, 도출된 토픽 중 'vaccine'과 관련된 논문 4,555편, 'treatment'와 관련된 논문 5,791편을 추출한다. 두 번째로 추출된 논문을 대상으로 LDA, PCA 차원 축소 후 t-SNE 기법을 사용하여 비슷한 주제를 가진 논문을 군집화하고 산점도로 시각화하였다. 전체 논문을 대상으로 찾을 수 없었던 숨겨진 주제를 키워드에 따라 문헌을 분류하여 토픽 모델링을 수행한 결과 세부 주제를 찾을 수 있었다. 본 연구의 목표는 대량의 문헌에서 키워드를 입력하여 특정 정보에 대한 문헌을 분류할 수 있는 방안을 제시하는 것이다. 본 연구의 목표는 의료 전문가와 정책 담당자들의 소중한 시간과 노력을 줄이고, 신속하게 정보를 얻을 수 있는 방법을 제안하는 것이다. 학술 논문의 초록에서 COVID-19와 관련된 토픽을 발견하고, COVID-19에 대한 새로운 연구 방향을 탐구하도록 도움을 주는 기초자료로 활용될 것으로 기대한다.
융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).
한의학에서 진단과 치료의 기본 대상인 경혈.경락의 혈위 식별을 위한 방법으로 기존의 방식은 직류를 인체 피부에 자극하여 저정항 양도점을 식별하고 있다. 그러나 직류를 인체에 인가하면 시간에 따라 전류가 감소하는 현상이 있어서 반복 측정 시에 식별율 및 재현성이 감소되는 식별데이터의 신뢰성이 충분하지 못한 단점이 있으며 세포에 분극현상을 일으켜서 인체의 생리적 상태에 영향을 준다. 또한 직류방식은 식별계측에 시간이 다소 길게 소요되며 전류감쇠현상으로 낮아진 측정 전류량을 얻기 위해서는 전극의 압력이 증가하게 되며 그 전극누름 압력에 의한 통증을 유발시킨다. 이를 개선하기 위하여 전류의 시간적 감소현상과 인체 영향력을 최소화할 수 있는 경혈자극 패턴의 최적 파라메터를 추출하고, 이를 적용한 SPAC(Single Power Alternative Current) 자극방식을 제안하였다. 이는 주파수를 1.28V의 4kHz로 결정하고, 듀티비가 40%인 구형파에 가까운 파형을 추출하였다. 또한 피부 상태에 관계없이 식별이 어려군 부위에서도 식별이 용이하도록 피부 전류량의 절대값과 상대값을 레벨메터에 동시에 표시하고, 측정 전류량을 그래프로 연속 표시하여 식별에 유리한 알고리즘을 제안하였다. 추출된 최적 파라메터와 알고리즘을 적용한 식별시스템을 구현하여 성능을 기존의 직류방식과 비교 검토한 결과, 식별율(경혈과 비경혈의 상대차)은 19.6%, 재현성은 15.1%, 인체영향력은 11.2%, 고전 경혈점과의 부합율은 18.4% 향상되었음을 확인하였다.
다서(茶書)가 드믄 우리나라에서 초의선사(艸衣禪師)의 '동다송(東茶頌)'은 위상이 대단하다. "동다송"은 이목(李穆: 1471~1498)의 "다부(茶賦)", 이덕리(李德履: 1728~?)의 "기다(記茶)"와 함께 세 봉우리를 이룬다. 이들 다서는 모두 육우(陸羽)의 "다경(茶經)"을 바탕으로 한다. "다경"의 위치를 기(起)라 할 때, "다부"는 승(承), "기다"는 전(轉), "동다송"은 결(結)에 비할 수 있다. "동다송"은 "다신전(茶神傳)"과 떼려야 뗄 수 없는 관계에 있다. "다신전"은 장원(張源)의 "다록(茶錄)"을 초록한 것이다. "다신전"의 핵심 주제어는 바로 '다신(茶神)'이다. 초의는 "다록" "다록"의 핵심 개념을 자기 관점으로 뽑아 자신의 다도철학을 수립하였다. 또 자신의 철학으로 만드는 과정에서 한국사상의 전통 가운데 하나인 '묘합(妙合)'의 원리를 이끌어 체계를 다시 짰다. 한국사상은 정신과 물질을 분리시켜 보지 않는 데 특징이 있다. 정신과 물질은 엄연히 다른 것임에도 이것을 갈라서 보지 않은 것이 이른바 '묘합'이다. 둘이면서 하나이고 하나이면서 둘인 관계가 묘합이다. 초의의 다도철학은 한국사상의 전통을 잘 계승한 것으로 평가할 수 있다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.