In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and then choose a number of terms called initial representative keywords (IRKS) from them through fuzzy inference. Then, by expanding and reweighting IRKS using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKS so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The results show that our approach outperforms the other approaches.
There have been proposed various copyright protection protocols in network-based digital multimedia distribution framework. However, most of conventional copyright protection protocols are focused on the stability of copyright information embedding/extracting and the access control to data suitable for user's authority but overlooked the privacy of copyright owner and user in authentication process of copyright and access information. In this paper, we propose a solution that builds a privacy-preserving proof of copyright ownership of digital contents in conjunction with keyword search scheme. The appeal of our proposal is three-fold: (1) content providers maintain stable copyright ownership in the distribution of digital contents; (2) the proof process of digital contents ownership is very secure in the view of preserving privacy; (3) the proposed protocol is the copyright protection protocol added by indexing process but is balanced privacy and efficiency concerns for its practical use.
Studies on online review have carried out analysis of the rating and topic as a whole. However, it is necessary to analyze opinions on various dimensions of service quality. This study classifies reviews of healthcare services into service quality dimensions, and proposes a method to identify words that are mainly referred to in each dimension. Service quality was based on the dimensions provided by SERVQUAL, and patient reviews have collected from NHSChoice. The 2,000 sentences sampled were classified into service quality dimension of SERVQUAL and a method of extracting important keywords from sentences by service quality dimension was suggested. The RAKE algorithm is used to extract key words from a single document and an index is considered to consider frequently used words in various documents. Since we need to identify key words in various reviews, we have considered frequency and discrimination (IDF) at the same time, rather than identifying key words based only on the RAKE score. In SERVQUAL dimension, we identified the words that patients mentioned mainly, and also identified the words that patients mainly refer to by review rating.
Paintings can evoke emotions in viewers. In this paper, we propose a method for extracting emotion from paintings by using the colors that comprise the paintings. For this, we generate color spectrum from input painting and compare the color spectrum and color combination for finding most similarity color combination. The found color combinations are mapped with emotional keywords. Thus, we extract emotional keyword as the emotion evoked by the painting. Also, we vary the form of algorithms for matching color spectrum and color combinations and extract and compare results by using each algorithm.
최근 많은 기업 중에서 가트너는 매년 미래유망기술과 쿨벤더를 발표한다. 우리는 쿨벤더에서 제공하는 여러 정보들을 분석하여 미래유망기술에 대한 키워드를 찾고 이것을 실제 기술명과 연관짓고자 한다. 이 모든 과정의 전체적인 그림이 온톨로지 모델에 담긴다. 이 연구는 향후 어떤 집단의 미래를 이끌어갈 핵심 기술을 찾고자 하는 결정권자들에게 도움이 될 것이다.
Users are sharing many of contents such as text, image, video, and so on in SNS. There are various information as like as personal interesting, opinion, and relationship in social media contents. Therefore, many of recommendation systems or search systems are being developed through analysis of social media contents. In order to extract subject-related topics of social context being collected from social media channels in developing those system, it is necessary to develop ontologies for semantic analysis. However, it is difficult to develop formal ontology because social media contents have the characteristics of non-formal data. Therefore, we develop a social topic system based on semantic and subject correlation. First of all, an extracting system of social topic based on semantic relationship analyzes semantic correlation and then extracts topics expressing semantic information of corresponding social context. Because the possibility of developing formal ontology expressing fully semantic information of various areas is limited, we develop a self-extensible architecture of ontology for semantic correlation. And then, a classifier of social contents and feed back classifies equivalent subject's social contents and feedbacks for extracting social topics according semantic correlation. The result of analyzing social contents and feedbacks extracts subject keyword, and index by measuring the degree of association based on social topic's semantic correlation. Deep Learning is applied into the process of indexing for improving accuracy and performance of mapping analysis of subject's extracting and semantic correlation. We expect that proposed system provides customized contents for users as well as optimized searching results because of analyzing semantic and subject correlation.
의학용 시소러스인 MeSH (Medical Subject Heading)는 영어 의학 논문 색인을 위한 통제어 시소러스로서 오랫동안 사용되고 있다. 본 논문에서는 한국어 MeSH를 이용하여 한국어 의학 논문의 요약문에 자동으로 영문 MeSH 색인어를 부여하는 '교차언어 키워드 부여' 방법을 제안하고 색인 전문가 및 저자의 색인 효율과 비교한다. 이 색인어 부여 과정은 우선 한국어 MeSH 용어를 문장에서 인식하여 추출하고, 이 용어를 다시 영어 MeSH 용어로 바꾼 후, 용어의 중요도를 계산하여 상위의 용어를 색인어로 부여한다. 특히, 한국어 MeSH 용어 추출을 위해 효과적으로 띄어쓰기 변이를 처리할 수 있는 방법을 제안한다 실험 결과, 띄어쓰기 변이를 효과적으로 처리하여 한국어 MeSH의 크기를 약 42% 정도 줄였을 뿐만 아니라, 후보 색인어 추출의 효과도 높였다. 또 이 방법을 이용하여 색인어 자동 부여를 한 후, 색인 전문가 및 저자의 색인 결과를 비교한 결과, 이 자동 색인 방법이 전문가의 색인 능력보다는 부족했지만, 저자의 색인 능력과는 별 차이가 없음을 보였다.
이 논문에서는 빈칸 되묻기 방식 기반 다중 키워드 처리가 가능한 주문용 챗봇을 제안한다. 일반적으로 챗봇을 이용한 주문 서비스의 경우에는 개발자가 미리 정의한 순서에 따라서만 주문이 진행된다. 그리고 한번의 답변으로 들어올 수 있는 입력 정보가 정해져 있기 때문에 사용자에 따라 다른 입력을 고려하지 못한다. 이 연구에서는 이러한 문제를 해결하기 위해 빈칸 되묻기 방식을 사용하여 다중 키워드 동시 처리를 하고자 한다. 빈칸 되묻기 방식은 다음과 같이 진행된다. 첫번째, 각 주문 단계에서 입력 받아야 하는 정보를 저장할 수 있는 배열을 미리 만들어 둔다. 그리고 각 주문 단계별로 받을 수 있는 정보들을 키워드로 미리 지정한다. 두번째로, 입력된 문장에서 키워드를 추출하는 작업을 진행한다. 그리고 추출된 키워드들을 해당하는 주문 단계의 배열에 채워 넣는다. 마지막으로, 각 주문 단계의 배열을 체크하면서 비어있는 단계에 대한 질문만 진행하여 부족한 정보들을 전부 채운다. 배열이 모두 채워지면 주문이 완료된다. 제안하는 방식은 한 문장에 주문과 관련된 키워드가 여러 개이더라도 처리가 가능하다. 그리고 한 번에 여러 개의 키워드를 처리할 수 있기 때문에 주문 단계를 생략하여 주문 시간을 줄일 수 있다. 안드로이드 스마트폰을 이용해 챗봇을 구현하고 빈칸 되묻기 방식을 이용해 주문 단계의 동적 처리가 되는지 실험을 통해 확인한다.
지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.
The narrative texts of industrial accident reports help to identify accident risk factors. They relate the accident triggers to the sequence of events and the outcomes of an accident. Particularly, a set of related keywords in the context of the narrative can represent how the accident proceeded. Previous studies on text analytics for structuring accident reports have been limited to extracting individual keywords without context. We proposed a context-based analysis using a Natural Language Processing (NLP) algorithm to remedy this shortcoming. This study aims to apply Word2Vec of the NLP algorithm to extract adjacent keywords, known as word embedding, conducted by the neural network algorithm based on supervised learning. During processing, Word2Vec is conducted by adjacent keywords in narrative texts as inputs to achieve its supervised learning; keyword weights emerge as the vectors representing the degree of neighboring among keywords. Similar keyword weights mean that the keywords are closely arranged within sentences in the narrative text. Consequently, a set of keywords that have similar weights presents similar accidents. We extracted ten accident processes containing related keywords and used them to understand the risk factors determining how an accident proceeds. This information helps identify how a checklist for an accident report should be structured.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.