• 제목/요약/키워드: Extracellular proteins

검색결과 462건 처리시간 0.023초

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

  • Kim, Min Keun;Lee, Sun Mi;Seuk, Su Won;Ryu, Jae San;Kim, Hee Dae;Kwon, Jin Hyeuk;Choi, Yong Jo;Yun, Han Dae
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.276-287
    • /
    • 2017
  • RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.

Cytotoxicity Effects of Mouse IgG Produced against Three Nanoliposomal Human DR5 Receptor Epitopes on Breast Cancer Cells

  • Amirijavid, Shaghayegh;Entezari, Maliheh;Movafagh, Abolfazl;Hashemi, Mehrdad;Mosavi-Jarahi, Alireza;Dehghani, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.257-261
    • /
    • 2016
  • Cancer causes cells to avoid death while being the second cause of death in the world itself. Damaged cells in the absence of apoptosis will increasingly amplify their inefficient genome. Of the two main apoptosis inducing pathways in cells, the first has p53 protein as the main initiating factor in the cascade. According to research results this protein s mutated in 50% of cancers and sointerest has cooncentrated on the second pathway that features death receptors. Among these receptors TRAIL1/DR5 is especially expressed in cancer cells. So targeting such receptors can initiate the apoptotic cascade in cells. Interestingly by substitution of activating ligands with antibodies as agonists, we could efficiently turn on the apoptosis pathway. First of all, three small peptides from the DR5 protein extracellular domain were synthesized and injected with two different kind of adjuvants (Fround and liposomal encapsulation) separately into mice at 15 day intervals. As a result, liposomal peptides induced the immune system more efficient than Frounds adjuvant and at the end point the antibodies which were obtained from liposomal peptide injection induced much more effective death. Liposomal formol could be used as an adjuvant in immunization utilizing small peptides. They carry, protect and deliver peptides very efficiently. In addition, small peptides of a certain size from the extracellular domain of DR5 proteins not only can induce immune system but also produce antibodies playing a remarkable anti-cancer roles against breast cancer cells (MCF-7).

Purification and Characterization of a New Peptidase, Bacillopeptidase DJ-2, Having Fibrinolytic Activity: Produced by Bacillus sp. DJ-2 from Doen-Jang

  • CHOI, NACK-SHICK;YOO, KI-HYUN;HAHM, JEUNG-HO;YOON, KAB-SEOG;CHANG, KYU-TAE;HYUN, BYUNG-HWA;PIL, JAE-MAENG;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.72-79
    • /
    • 2005
  • A new Bacillus peptidase, bacillopeptidase DJ-2 (bpDJ-2), with molecular mass of 42 kDa and isoelectric point (pI) of 3.5- 3.7, was purified to homogeneity from Bacillus sp. DJ-2 isolated from Doen-Jang, a traditional Korean soybean fermented food. The enzyme was identified as an extracellular serine fibrinolytic protease. The optimal conditions for the reaction were pH 9.0 and $60^{\circ}C$. The first 18 amino acid residues of the N-terminal amino acid sequence of bpDJ-2 were TDGVEWNVDQIDAPKAW, which is identical to that of bacillopeptidase F (bpf). However, based on their Nterminal amino acid sequence, molecular size, and pI, it is different from that of bpf and extracellular 90 kDa. The whole (2,541 bp, full-bpDJ-2) and mature (1,956 bp, mature-bpDJ-2) genes were cloned, and its nucleotide sequence and deduced amino acid sequence were determined. The expressed proteins, full-bpDJ-2 and mature-bpDJ-2, were detected on SDSPAGE at expected sizes of 92 and 68 kDa, respectively.

High-Level Secretory Expression of Human Procarboxypeptidase B by Fed-Batch Cultivation of Pichia pastoris and its Partial Characterization

  • Kim, Mi-Jin;Kim, Sang-Hyuk;Lee, Jae-Hyung;Seo, Jin-Ho;Lee, Jong-Hwan;Kim, Jong-Hyun;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1938-1944
    • /
    • 2008
  • The procpb gene encoding human procarboxypeptidase B (proCPB, GeneBank access code AJ224866) was cloned and its Pichia expression plasmid, $pPIC9{\alpha}$/hproCPB (9.2 kb), was constructed, in which procpb was under the control of the AOXl promoter and connected to the downstream of the mating factor ${\alpha}$-1 ($MF{\alpha}1$) signal sequence. The plasmid was linearized by digestion with Sacl, and integrated into the genome of P. pastoris strain GS115. By culturing of Pichia transformant on methanol medium, the human proCPB was successfully expressed and secreted into the culture supernatant. Moreover, Western blot analysis of the extracellular proteins showed proCPB bands clearly at a molecular mass of 45 kDa, confirming the expression of proCPB with its right size. The CPB activity reached about 3.5 U/ml and 12.7 U/ml in the flask and fermentor batch cultures of Pichia transformant, respectively. No CPB enzyme activity was found in the intracellular fraction. When the fed-batch cultivation was performed with methanol and glycerol mixture as a feeding medium, the extracellular CPB activity was increased to 42.0 U/ml, which corresponds to a 3.3-fold higher level of CPB activity than that of batch culture. The $K_m$ and $k_{cat}$ values of recombinant human CPB enzyme for hippuryl-$_L$-Arg as a substrate were estimated to be 0.16 mM and $11.93\;sec^{-1}$, respectively.

PHB 합성을 위한 A. eutrophus의 최적 배양 조건 및 부생성물의 영향 고찰 (The Study on the Optimum Culture Conditions and Effects of by-products of A. eutrophus for the Biosynthesis of PHB)

  • 오준택;이동건김우식
    • KSBB Journal
    • /
    • 제9권5호
    • /
    • pp.475-482
    • /
    • 1994
  • A. eutrophus 균주를 이용하여 여러 변수에 대한 균성장속도 및 PHB 축적 변화를 고찰하였다. 글루 코오스 및 $>(NH_4)_2HP0_4$를 탄소원 및 질소원으로 사용할 경우가 균 성장 및 PHB 합성에 있어서 다른 기섣에 비해 효율적이었다. $>NH_4^{3-}, P0_4^{3-}, Mg^{2+}$등 을 제한하였을 경우 PHB의 축적이 촉진되었으며, 그 중 $>NH_4^+$가 가장 효율적인 제한 인자였다. Yeast extract를 기절 중에 첨가하였을 경우 성장속도가 1.5배 정도 증가하였는 바, 이는 단백질을 비롯한 비타민과 아미노산 등의 미량원소의 영향으로 사료된다. 균 성장시 산소가 부족할 경우 배출되는 부생성 물은 주로 butanedio\과 에탄올이었으며, 그 중 에 탄올이 균 성장에 저해 효과를 나타냄을 확인하였다.

  • PDF

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

Bacillus 미생물과 활성슬러지의 포자화에 따른 체외고분자물질 생성에 관한 연구 (Production of Extracellular Polymeric Substances by Sporulation of Bacillus sp. and Activated Sludge)

  • 이상호
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.85-93
    • /
    • 2011
  • The structural components of microorganism are quite related to the toxin and environmental conditions. The vegetative and dormant cells are quite affected by the physical and chemical environments to survive and they will be dormant when they are in the extreme environment. The mechanism to activate the microorganisms however, is not well defined yet in the area of activation state and sporulation state through the analysis of EPS. Other than that even the main mechanism of prior to acquisition of analysis values is not well understood. Therefore, what kind of specific environment to affect the activation and sporulation will be discussed through the analysis of the extracellular polymeric substances(EPS). EPS are a high molecular weight mixture of polymers presenting both outside of cells and interior of microbial aggregates. They are a major complex materials in microbial aggregation for sustaining them together in a three dimensional matrix. Three commonly used extraction methods were applied to this study their effectiveness and quantification in extracting EPS from several Bacillus microorganisms and activated sludge. Three extraction methods used for this study are regular centrifugation with formaldehyde (RCF), Steaming, and EDTA extraction. The results of EPS contents such as the quantitative proteins, carbohydrates and the ratio of protein versus carbohydrate from the several species with the several specific methods showed in this research. This study aims to get comparable results of the quantitative production of EPS and the effectiveness of sedimentation for Bacillus microorganisms and activated sludge from several wastewater treatment plans. The results revealed that the protein amount extracted was the highest by the Steaming method of three extraction methods before sporulation and the carbohydrate amount extracted was the highest by the RCA method of three extraction methods after sporulation. The higher amount of protein compared with carbohydrate from Bacillus microorganisms affected higher sedimentation efficiency, however it could not be found the relation between the EPS production and sedimentation efficiency for the activated sludge.

Anthocyanins from Hibiscus Syriacus Inhibit Melanogenesis by Activating the ERK Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Park, Sang Rul;Kim, Jeong Woon;Lee, Oh-Kyu;Kwon, Hae Yun;Oren, Matan;Choi, Yung Hyun;Ryu, Hyung Won;Oh, Sei-Ryang;Jo, Wol Soon;Lee, Kyoung Tae;Kim, Gi-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.90-90
    • /
    • 2019
  • Hibiscus syriacus exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited ${\alpha}$-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in ${\alpha}$-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.

  • PDF

아연의 1차혈관평활근세포 증식에 대한 기능 (The function of zinc in the primary vascular smooth muscle cell proliferation in rats)

  • 조영은;권인숙
    • Journal of Nutrition and Health
    • /
    • 제53권6호
    • /
    • pp.563-569
    • /
    • 2020
  • Purpose: The vascular smooth muscle cells (VSMCs) in mature animals have implicated to play a major role in the progression of cardiovascular diseases such as atherosclerosis. This study aimed at optimizing the protocol in culturing primary VSMCs (pVSMCs) from rat thoracic aorta and investigating the effect of cellular zinc (Zn) deficiency on cell proliferation of the isolated pVSMCs. Methods: The thoracic aorta from 7-month-old Sprague Dawley rats was isolated, minced and digested by the enzymatic process of collagenase I and elastase, and then inoculated with the culture Dulbecco Modified Eagle Medium (DMEM) at 37℃ in an incubator. The primary cell culture morphology was observed using phase-contrast microscopy and cellular Zn was depleted using Chelex-100 resin (extracellular zinc depletion only) or 3 µM N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) (extracellular and intracellular zinc depletion). Western blot analysis was used for the detection of SM22α and calponin as smooth muscle cell marker proteins and von Willebrand factor as endothelial cell marker protein to detect the culture purity. Cell proliferation by Zn depletion (1 day) was measured by MTT assay. Results: A primary culture protocol for pVSMCs from rat thoracic aorta was developed and optimized. Isolated cultures exhibited hill and valley morphology as the major characteristics of pVSMCs and expressed the smooth muscle cell protein markers, SM22α and calponin, while the endothelial marker von Willebrand factor was hardly detected. Zn deprivation for 1 day culture decreased rat primary vascular smooth muscle cell proliferation and this pattern was more prominent under severe Zn depletion (3 µM TPEN), while less prominent under mild Zn depletion (Chelexing). Conclusion: Our results suggest that cellular Zn deprivation decreased pVSMC proliferation and this may be involved in phenotypic modulation of pVSMC in the aorta.