• Title/Summary/Keyword: Extracellular proteins

Search Result 451, Processing Time 0.035 seconds

Analysis of the Proteins Accumulated During Cold Treatment in Intermolecular Space of Barley (저온에서 세포밖 공간에 축적되는 보리 단백질)

  • 황철호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.1
    • /
    • pp.15-28
    • /
    • 1995
  • In order to identify an antifreeze proteins responsible for freeze-tolerance in barley the proteins accumulated in extracellular space during cold acclimination were extracted and analyzed. After 42 days cold treatment there were several proteins sized of 70, 21, 16, 14 KDa increased in their amount accumulated in extracellular space. In addition, continuously sized polypeptides smaller than 10 KDa were found to be increased in their amount as cold treatment prolongs. Since these proteins were not detectable in total leaf protein extract it appears that the procedure used to isolate extracellular extract was valid. A similarity in profile of the extracellular proteins isolated from barley and rye may indicate a possibility for these proteins to be an antifreeze proteins since the same extract from rye was reported to show an antifreezing activity.

  • PDF

Properties of the Extracellular Proteins Produced by Bacillus sp. WY-60 (Bacillus sp. WY-60이 생산한 균체외 단백질의 특성)

  • Kwon, Oh-Jin;Park, Shin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.807-810
    • /
    • 1993
  • Extracellular proteins of Bacillus sp. WY-60 were obtained, and then the properties of the isolated proteins were characterized. The proteins were composed of two kinds of protein in size. The molecular weight of the major protein was around 21,000 according to the gel filtration chromatography and SDS-polyacryamide gel electrophoresis. The amino acid composition showed that glutamic acid was a major amino acid with the concentration of 26.16mg/g. The isoelectric point of the proteins was about pH 7.5.

  • PDF

Afatinib Mediates Autophagic Degradation of ORAI1, STIM1, and SERCA2, Which Inhibits Proliferation of Non-Small Cell Lung Cancer Cells

  • Kim, Mi Seong;Kim, So Hui;Yang, Sei-Hoon;Kim, Min Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • Background: The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods: Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non-small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results: The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non-small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinib-resistant non-small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion: Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Extracellular vesicles as emerging intercellular communicasomes

  • Yoon, Yae Jin;Kim, Oh Youn;Gho, Yong Song
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.531-539
    • /
    • 2014
  • All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

Comparative Study of Extracellular Proteomes for Bacillus subtilis and Bacillus amyloliquefaciens

  • Lauan, Maria Claret;Santos, IlynLyzette;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Bacillus subtilis and Bacillus amyloliquefaciens are closely related species that share a similar genomic background, and are both known to secrete large amounts of proteins directly into a medium. The extracellular proteomes of two strains of Bacillus subtilis and two strains of Bacillus amyloliquefaciens were compared by 2-D gel electrophoresis during the late exponential growth phase. The relative abundance of some minor protein spots varied among the four strains of Bacillus. Over 123 spots of extracellular proteins were visualized on the gel for B. subtilis CH 97, 68 spots for B. subtilis 3-5, 230 spots for B. amyloliquefaciens CH 51, and 60 spotsfor B. amyloliquefaciens 86-1. 2D gel electrophoresis images of the four Bacillus strains showed significantly different protein profiles. Consistent with the 2D gel electrophoretic analysis, most of the B. subtilis proteins differed from the proteases secreted by the B. amyloliquefaciensstrains. Among the proteins identified from B. subtilis, approximately 50% were cytoplasmic and 30% were canonically extracellular proteins. The secreted protein profiles for B. subtilis CH 97 and B. subtilis 3-5 were quite different, as were the profiles for B. amyloliquefaciens CH 51 and 86-1. The four proteomes also differed in the major protein composition. The B. subtilis CH 97 and B. amyloliquefaciens CH 51 proteomes both contained large amounts of secreted hydrolytic enzymes. Among the four strains, B. subtilis 3-5 secreted the least number of proteins. Therefore, even closely related bacteria in terms of genomic sequences can still have significant differences in their physiology and proteome layout.

  • PDF

Ligand Recognition by the Toll-like Receptor Family

  • Jin, Mi-Sun;Lee, Jie-Oh
    • Animal cells and systems
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Toll-like receptor (TLR) family proteins, type I transmembrane proteins, play a central role in human innate immune response by recognizing common structural patterns in diverse molecules from bacteria, viruses and fungi. Recently four structures of the TLR and ligand complexes have been determined by high resolution x-ray crystallographic technique. In this review we summarize reported structures of TLRs and their proposed activation mechanisms. The structures demonstrate that binding of agonistic ligands to the extracellular domains of TLRs induces homo- or heterodimerization of the receptors. Dimerization of the TLR extracellular domains brings their two C-termini into close proximity. This suggests a plausible mechanism of TLR activation: ligand induces dimerization of the extracellular domains, which enforces juxtaposition of intracellular signaling domains for recruitment of intracellular adaptor proteins for signal initiation.

Comparison of Proteins Secreted into Extracellular Space of Pathogenic and Non-pathogenic Acanthamoeba castellanii

  • Moon, Eun-Kyung;Choi, Hyun-Seo;Park, So-Min;Kong, Hyun-Hee;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.553-558
    • /
    • 2018
  • Pathogenic Acanthamoeba spp. cause granulomatous amoebic encephalitis and keratitis. Acanthamoeba keratitis (AK) is a rare but serious ocular infection that can result in permanent visual impairment or blindness. However, pathogenic factors of AK remain unclear and treatment for AK is arduous. Expression levels of proteins secreted into extracellular space were compared between A. castellanii pathogenic (ACP) and non-pathogenic strains. Two-dimensional polyacrylamide gel electrophoresis revealed 123 differentially expressed proteins, including 34 increased proteins, 7 qualitative increased proteins, 65 decreased proteins, and 17 qualitative decreased proteins in ACP strain. Twenty protein spots with greater than 5-fold increase in ACP strain were analyzed by liquid chromatography triple quadrupole mass spectrometry. These proteins showed similarity each to inosine-uridine preferring nucleoside hydrolase, carboxylesterase, oxygen-dependent choline dehydrogenase, periplasmic-binding protein proteinases and hypothetical proteins. These proteins expressed higher in ACP may provide some information to understand pathogenicity of Acanthamoeba.

Bacillus subtilis의 단백질 분비기구 SecY의 유전자 수준의 조절이 단백질 분비에 미치는 영향

  • 김상숙;김순옥;서주원
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.408-414
    • /
    • 1996
  • The SecY is a central component of the protein export machinery that mediate the translocation of secretory proteins across the plasma membrane, and has been known to be rate-limiting factor of secretion in Escherichia coli. In order to study the extracellular protein secretion in Gram-positive microorganism, we have, constructed strains harboring more than one copy of the gene for SecY. Firstly, the gene, for B. subtilis SecY and its promoter region was subcloned into pDH32 and the chimeric vector was inserted into amyE locus by homologous recombination. Secondly, low copy number vector, pCED6, was also used for subcloning the secY gene and for constructing a strain which harbors several copies of secY. The KH1 cell which harbor two copies of secY on the chromosome excreted more extracellular proteins than the wild type PB2. Moreover, the KH2 cells which harbor several copies of secY in pCED6 vector excreted more extracellular proteins than the KH1 cells. Here, we found that the capacity of protein secretion is partly controlled by the number of secY and it is suggested that SecY has also an important role in protein secretion in B. subtilis, a gram positive microorganism, as like in E. coli. This will promote the use of B. subtilis as a host for the expression of useful foreign gene and excretion of precious proteins.

  • PDF

Effects of Extracellular Matrix Protein-derived Signaling on the Maintenance of the Undifferentiated State of Spermatogonial Stem Cells from Porcine Neonatal Testis

  • Park, Min Hee;Park, Ji Eun;Kim, Min Seong;Lee, Kwon Young;Hwang, Jae Yeon;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1398-1406
    • /
    • 2016
  • In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system.