Ligand Recognition by the Toll-like Receptor Family

  • Jin, Mi-Sun (Department of Chemistry, Department of Nanoscience and Technoloogy, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jie-Oh (Department of Chemistry, Department of Nanoscience and Technoloogy, Korea Advanced Institute of Science and Technology)
  • Published : 2009.03.31

Abstract

Toll-like receptor (TLR) family proteins, type I transmembrane proteins, play a central role in human innate immune response by recognizing common structural patterns in diverse molecules from bacteria, viruses and fungi. Recently four structures of the TLR and ligand complexes have been determined by high resolution x-ray crystallographic technique. In this review we summarize reported structures of TLRs and their proposed activation mechanisms. The structures demonstrate that binding of agonistic ligands to the extracellular domains of TLRs induces homo- or heterodimerization of the receptors. Dimerization of the TLR extracellular domains brings their two C-termini into close proximity. This suggests a plausible mechanism of TLR activation: ligand induces dimerization of the extracellular domains, which enforces juxtaposition of intracellular signaling domains for recruitment of intracellular adaptor proteins for signal initiation.

Keywords

References

  1. Akira S and Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499-511 https://doi.org/10.1038/nri1391
  2. Alexopoulou L, Holt AC, Medzhitov R, and Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738 https://doi.org/10.1038/35099560
  3. Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, and Davies DR (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci USA 102: 10976-10980 https://doi.org/10.1073/pnas.0505077102
  4. Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, and Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24: 528-533 https://doi.org/10.1016/S1471-4906(03)00242-4
  5. Beutner KR, Tyring SK, Trofatter KF, Jr., Douglas JM, Jr., Spruance S, Owens ML, Fox TL, Hougham AJ, and Schmitt KA (1998) Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. Antimicrob Agents Chemother 42: 789-794
  6. Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S, and Ulmer AJ (2005) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35: 282-289 https://doi.org/10.1002/eji.200424955
  7. Choe J, Kelker MS, and Wilson IA (2005) Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309: 581-585 https://doi.org/10.1126/science.1115253
  8. Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, and Hartung T (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170: 4134-4138 https://doi.org/10.4049/jimmunol.170.8.4134
  9. Dunne A, Ejdeback M, Ludidi PL, O'Neill LA, and Gay NJ (2003) Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 278: 41443-41451 https://doi.org/10.1074/jbc.M301742200
  10. Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, and Landmann R (2002) Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186: 798-806 https://doi.org/10.1086/342845
  11. Erridge C, Bennett-Guerrero E, and Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4: 837-851 https://doi.org/10.1016/S1286-4579(02)01604-0
  12. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, and Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100: 171-194 https://doi.org/10.1016/j.pharmthera.2003.08.003
  13. Gautam JK, Ashish, Comeau LD, Krueger JK, and Smith MF, Jr. (2006) Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J Biol Chem 281: 30132-30142 https://doi.org/10.1074/jbc.M602057200
  14. Gay NJ and Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76: 141-165 https://doi.org/10.1146/annurev.biochem.76.060305.151318
  15. Gay NJ and Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351: 355-356
  16. Gibbard RJ, Morley PJ, and Gay NJ (2006) Conserved features in the extracellular domain of human toll-like receptor 8 are essential for pH-dependent signaling. J Biol Chem 281: 27503-27511 https://doi.org/10.1074/jbc.M605003200
  17. Han SH, Kim JH, Martin M, Michalek SM, and Nahm MH (2003) Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71: 5541-5548 https://doi.org/10.1128/IAI.71.10.5541-5548.2003
  18. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, and Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196-200 https://doi.org/10.1038/ni758
  19. Hioe CE, Qiu H, Chend PD, Bian Z, Li ML, Li J, Singh M, Kuebler P, McGee P, O'Hagan D, Zamb T, Koff W, Allsopp C, Wang CY, and Nixon DF (1996) Comparison of adjuvant formulations for cytotoxic T cell induction using synthetic peptides. Vaccine 14: 412-418 https://doi.org/10.1016/0264-410X(95)00191-3
  20. Iwaki D, Nishitani C, Mitsuzawa H, Hyakushima N, Sano H, and Kuroki Y (2005) The CD14 region spanning amino acids 57-64 is critical for interaction with the extracellular Toll-like receptor 2 domain. Biochem Biophys Res Commun 328: 173-176 https://doi.org/10.1016/j.bbrc.2004.12.162
  21. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, and Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071-1082 https://doi.org/10.1016/j.cell.2007.09.008
  22. Jin MS and Lee JO (2008) Application of hybrid LRR technique to protein crystallization. BMB Rep 41: 353-357 https://doi.org/10.5483/BMBRep.2008.41.5.353
  23. Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277: 519-527 https://doi.org/10.1006/jmbi.1998.1643
  24. Kanzler H, Barrat FJ, Hessel EM, and Coffman RL (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13: 552-559 https://doi.org/10.1038/nm1589
  25. Kim HM, Oh SC, Lim KJ, Kasamatsu J, Heo JY, Park BS, Lee H, Yoo OJ, Kasahara M, and Lee JO (2007a) Structural diversity of the hagfish variable lymphocyte receptors. J Biol Chem 282: 6726-6732 https://doi.org/10.1074/jbc.M608471200
  26. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, and Lee JO (2007b) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130: 906-917 https://doi.org/10.1016/j.cell.2007.08.002
  27. Kim JI, Lee CJ, Jin MS, Lee CH, Paik SG, Lee H, and Lee JO (2005) Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem 280: 11347-11351 https://doi.org/10.1074/jbc.M414607200
  28. Kobe B and Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19: 415-421 https://doi.org/10.1016/0968-0004(94)90090-6
  29. Kobe B and Deisenhofer J (1995) Proteins with leucine-rich repeats. Curr Opin Struct Biol 5: 409-416 https://doi.org/10.1016/0959-440X(95)80105-7
  30. Kobe B and Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11: 725-732 https://doi.org/10.1016/S0959-440X(01)00266-4
  31. Kusumoto S, Fukase K, Fukase Y, Kataoka M, Yoshizaki H, Sato K, Oikawa M, and Suda Y (2003) Structural basis for endotoxic and antagonistic activities: investigation with novel synthetic lipid A analogs. J Endotoxin Res 9: 361-366 https://doi.org/10.1177/09680519030090060901
  32. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, and Golenbock DT (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8: 772-779 https://doi.org/10.1038/ni1479
  33. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, and Davies DR (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320: 379-381 https://doi.org/10.1126/science.1155406
  34. Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N, Espevik T, Wiesmuller KH, Ulmer AJ, and Heine H (2005) Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol 35: 911-921 https://doi.org/10.1002/eji.200425336
  35. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, and Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate tolllike receptors. BMC Genomics 8: 124 https://doi.org/10.1186/1471-2164-8-124
  36. Medzhitov R, Preston-Hurlburt P, and Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397 https://doi.org/10.1038/41131
  37. Miyake K (2003) Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles for MD-2. Int Immunopharmacol 3: 119-128 https://doi.org/10.1016/S1567-5769(02)00258-8
  38. Miyake K (2006) Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 12: 195-204 https://doi.org/10.1179/096805106X118807
  39. Morath S, Geyer A, and Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193: 393-397 https://doi.org/10.1084/jem.193.3.393
  40. Mullarkey M, Rose JR, Bristol J, Kawata T, Kimura A, Kobayashi S, Przetak M, Chow J, Gusovsky F, Christ WJ, and Rossignol DP (2003) Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J Pharmacol Exp Ther 304: 1093-1102 https://doi.org/10.1124/jpet.102.044487
  41. Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, and Shibata K (2006) CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell Microbiol 8: 1899-1909 https://doi.org/10.1111/j.1462-5822.2006.00756.x
  42. Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O'Neill LA, Gay NJ, Bryant CE, and Monie TP (2007) A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE 2: e788 https://doi.org/10.1371/journal.pone.0000788
  43. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, and Yegin O (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23: 219-223 https://doi.org/10.1183/09031936.03.00061703
  44. Ohto U, Fukase K, Miyake K, and Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316: 1632-1634 https://doi.org/10.1126/science.1139111
  45. O'Neill LA and Bowie AG (2007) The family of five: TIRdomain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7: 353-364 https://doi.org/10.1038/nri2079
  46. O'Neill LA (2004) TLRs: Professor Mechnikov, sit on your hat. Trends Immunol 25: 687-693 https://doi.org/10.1016/j.it.2004.10.005
  47. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, and Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97: 13766-13771 https://doi.org/10.1073/pnas.250476497
  48. Pancer Z and Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24: 497-518 https://doi.org/10.1146/annurev.immunol.24.021605.090542
  49. Park BS, Song DH, Kim HM, Choi BS, Lee H, and Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature https://doi.org/10.1038/nature07830
  50. Romagne F (2007) Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov Today 12: 80-87 https://doi.org/10.1016/j.drudis.2006.11.007
  51. Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, and Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278: 15587-15594 https://doi.org/10.1074/jbc.M212829200
  52. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, and Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777-1782 https://doi.org/10.1084/jem.189.11.1777
  53. Silverstein AM (2003) Darwinism and immunology: from Metchnikoff to Burnet. Nat Immunol 4: 3-6 https://doi.org/10.1038/ni0103-3
  54. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, and Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933-940 https://doi.org/10.1093/intimm/13.7.933
  55. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, and Akira S (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169: 10-14 https://doi.org/10.4049/jimmunol.169.1.10
  56. Tanamoto K and Azumi S (2000) Salmonella-type heptaacylated lipid A is inactive and acts as an antagonist of lipopolysaccharide action on human line cells. J Immunol 164: 3149-3156 https://doi.org/10.4049/jimmunol.164.6.3149
  57. Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, and Mira JP (2005) The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 41 Suppl 7: S408-415 https://doi.org/10.1086/431990
  58. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, and Triantafilou K (2006) Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281: 31002-31011 https://doi.org/10.1074/jbc.M602794200
  59. Viriyakosol S, Tobias PS, Kitchens RL, and Kirkland TN (2001) MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 276: 38044-38051
  60. West AP, Koblansky AA, and Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22: 409-437 https://doi.org/10.1146/annurev.cellbio.21.122303.115827