• Title/Summary/Keyword: Extracellular Polymeric Substances (EPS)

Search Result 46, Processing Time 0.018 seconds

Effect of Extracellular Polymeric Substances(EPS) on the Biosorption of Lead by Microorganisums (납의 생물흡착에 미치는 세포외고분자물질의 영향)

  • 서정호;김동석;송승구
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 1999
  • Comparison of lead removal characteristics between two strains, Aureobasidium pullulans and Saccharomyces cerevisiae, and effects of extracellular polymeric substances(EPS) excreted by microorganisms on the removal of lead were investigated. The capacity of lead biosorption to A. pullulans which had EPS was increased as the storage time of the cells increased, due to the increased amounts of excreted EPS. When the EPS were removed from A. pullulans cells, the amounts of adsorbed lead were very small(10% of the cell with EPS). In the case of s. cerevisiae which had no EPS, the lead removal capacity was nearly constant with storage time except early stage, but the spending time to reach an equilibrium state decreased with increasing storage time because of lowering the function of cell membrane. Therefore, it seems that the phenomena of lead biosorption were remarkably affected by the presence of extracellular polymeric substances.

  • PDF

Flocculation of microalgae using extracellular polymeric substances (EPS) extracted from activated sludge

  • Dong, Dandan;Seo, Dongmin;Seo, Sungkyu;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.147-153
    • /
    • 2018
  • This study investigates the role of microbial extracellular polymeric substances (EPSs) as bioflocculants to harvest microalgae (water-microalgae separation). The EPS extracted from waste activated sludge (WAS) by heat extraction were fractionated into soluble EPS (S-EPS), loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) forms. All the EPSs facilitated the flocculation of microalgal cells from stable growth medium. Of those EPSs, the TB-EPS showed the highest flocculating activity (FA) resulting in the substantial decrease in the amount of EPS added in terms of total organic carbon (TOC) during flocculation. The FA of microalgae was improved with the increase in TB-EPS dose, however, excessive dose of TB-EPS adversely affected it due to destabilization. Both LB- and TB-EPS could be utilized for flocculating microalgae as a sustainable option to the existing chemical-based flocculants. In addition to the conventional assessments, the effectiveness of the two bioflocculants for floc forming was also confirmed using a novel assessment of lens-free shadow imaging technique (LSIT), which was firstly applied for the rapid and quantitative assessment of microalgal flocculation.

The relation between sewage sludge solubilization and extracellular polymeric substances (하수슬러지 가용화와 체외고분자물질(EPS)간의 관계)

  • Jeon, Byeong-Cheol;Nam, Se-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2019
  • In order to investigate the relation between sewage sludge solubilization and extracellular polymeric substances(EPS) during alkaline-ultrasonic pretreatment, SCOD/TCOD ratio, solubilization rate, VSS/TS ratio, VSS reduction rate, LB-EPS(Loosely-Bound EPS) and TB-EPS(Tightly-Bound EPS) were measured. At the condition of TS 1.0% and pH 12, solubilization rate increased by 27.7%, LB-EPS as Carbohydrate and Protein increased by 14.6 and 13.3 mg/L/g TS, respectively. Withal, VSS decreased by 26.7% and TB-EPS as Carbohydrate and Protein were extracted by 15.7 and 21.9 mg/L/g TS, respectively. Consequently, the concentrations of organic matter and LB-EPS increased and the trends appeared similarly. In addition, the concentrations trend of decreasing solid matter and extracted TB-EPS also appeared similarly.

Effects of EPS on membrane fouling in a hybrid membrane bioreactor for municipal wastewater treatment

  • Zhang, Aining;Liu, Zhe;Chen, Yiping;Kuschk, Peter;Liu, Yongjun
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • A pilot-scale hybrid membrane bioreactor (HMBR) for real municipal wastewater treatment was developed by adding biofilm carriers into a conventional membrane bioreactor, distribution and dynamic changes of the extracellular polymeric substances (EPS) and their roles in membrane fouling were investigated. The results showed that the concentrations of loosely bond EPS (LB-EPS) and tightly bond EPS (TB-EPS) in activated sludge, carrier biofilm and sludge cake layer have been increased significantly with the running time of HMBR, during operation of the HMBR, EPS demonstrated positive correlations with membrane fouling. Compared to TB-EPS, LB-EPS showed more significant correlations with sludge physical properties and specific resistance to filtration (SRF) in HMBR, and thus demonstrated that LP-EPS have a stronger potential of fouling than TB-EPS. It was also found that a lower organic loading in HMBR could result a significant increase in EPS concentration, which would in turn influence membrane fouling in HMBR. This critical investigation would contribute towards a better understanding of the behavior, composition and fouling potential of EPS in HMBR operation.

Extracellular Polymeric Substances of Pseudomonas chlororaphis O6 Induce Systemic Drought Tolerance in Plants

  • Cho, Song Mi;Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2018
  • Pseudomonas chlororaphis O6 induces systemic tolerance in plants against drought stress. A volatile, 2R, 3R-butanediol, produced by the bacterium causes partial stomatal closure, thus, limiting water loss from the plant. In this study, we report that applications of extracellular polymeric substances (EPS) from P. chlororaphis O6 to epidermal peels of leaves of Arabidopsis thaliana also reduce the size of stomatal openings. Growth of A. thaliana seedlings with applications of the EPS from P. chlororaphis O6 reduced the extent of wilting when water was withheld from the plants. Fluorescence measurements showed photosystem II was protected in the A. thaliana leaves in the water stressed EPS-exposed plants. These findings indicate that P. chlororaphis O6 has redundancy in traits associated with induction of mechanisms to limit water stress in plants.

A Study on Membrane Fouling Contaminants and Control in Enhanced Sewage Treatment by Submerged Membrane Bioreactor (침지형 분리막을 이용한 오수고도처리 공정의 막오염 원인물질 및 제어에 관한 연구)

  • Park, Chul-Hwi;Yun, Jae-Gon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.619-627
    • /
    • 2004
  • Purposes of this study were to examine closely the extracellular polymeric substances (EPS) which was a membrane fouling contaminant, to control detected EPS by powdered activated carbon (PAC) dosage etc. and to evaluate the possibility of practical reuse facility. With high removal efficiency of general pollutants, when the PAC is added to MBR, improvement of removal efficiency of $COD_{cr}$, and color was expected and treated wastewater can be reused. It was judged that the correlation between EPS and membrane fouling was very high. Carbohydrate and DNA in the EPS were judged to be cause of membrane fouling. If EPS could be controled, not only membrane fouling would be decreased but also operation time would be extended. In experiment of powdered activated carbon (PAC), characteristics of the best PAC for membrane fouling control were the particle size of $7{\mu}m$, lodine Number of 1,050, surface area of peat of $1,150m^2/g$. In lab test, operation time of MBR by PAC dosage of 200mg/gVSS was longer than one of MBR by without PAC dosage. Because EPS, especially carbohydrate and DNA, was controled successfully by PAC, membrane fouling in MBR could be decreased.

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.

Extracellular polymeric substances produced by a marine bacterium, Hahella chejuensis

  • Lee, Hong-Kum
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.135-136
    • /
    • 2000
  • A bacterial strain producing a large amount of EPS was isolated from marine sediment sample collected from the Cheju Island, Republic of Korea. In the present study, the isolation and identification of this isolate, which is named Hahella chejuensis gen. nov., sp. nov., the effects of nutrients on the production of EPS, and some properties of this EPS are reported.

  • PDF

Relation between sludge properties and filterability in MBR: Under infinite SRT

  • Zhang, Haifeng;Wang, Bing;Yu, Haihuan;Zhang, Lanhe;Song, Lianfa
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.501-512
    • /
    • 2015
  • A laboratory-scale submerged membrane bioreactor (MBR) was continuously operated for 100 d at an infinite sludge retention time (SRT) with the aim of identifying possible relation between the filterability of mixed liquor and sludge properties, such as extracellular polymeric substances (EPS), soluble microbial products (SMP), viscosity of mixed liquor, zeta potential of flocs and particle size distributions (PSD). Research results confirmed that MBR can operate with a complete sludge retention ensuring good treatment performances for COD and $NH_3-N$. However, the long term operation (about 40 d) of MBR with no sludge discharge had a negative influence on sludge filterability, and an increase in membrane fouling rates with the time was observed. There as a strong correlation between the sludge filterability and the fouling rate. Among the different sludge properties parameters, the concentration SMP and EPS had a more closely correlation with the sludge filterability. The concentrations of SMP, especially SMP with MW above 10 kDa, had a strong direct correlation to the filterability of mixed sludge. The protein fractions in EPS were biodegradable and available for microorganism metabolism after about 60 days, and the carbohydrates in EPS had a significantly negative effect on sludge filterability in MBR at an infinite SRT.

Effect of Carbohydrates to Protein Ratio in EPS on Sludge Settling Characteristics

  • Shin, Hang-Sik;Kang, Seok-Tae;Nam, Se-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.460-464
    • /
    • 2000
  • Extracellular polymeric substances (EPS) are believed to play a role in the binding and formation of microbial flocs. However, the precise role is not well known. Sludge settling characteristics and the carbohydrate to protein ratio in EPS were tested with various airflow rates in this study. Sludge was collected from three modified sequencing batch reactors (SBRs), which were operated at 16$\^{C}$ with an airflow rate of 0.8L/min, 3L/min and 6L/min, respectively. During the operation, the reactor operated at an airflow rate of 0.8L/min showed sludge volume index (SVI) of 80 to 90ml/g and a constant ratio of carbohydrate to protein in the EPS, while a significant increase in the SVI was seen in the other reactors. Sludge bulking increased the amount of carbohydrate in the EPS, while kept protein almost constant in the airflow rate of 3L/min ad 6L/min. Surface charge also increased with increases in the carbohydrate to protein ratio in the EPS, which weakens the attraction between the EPS and multivalent cations. The ratio of carbohydrate to protein in the EPS was tween the EPS and multivalent cations. The ratio of carbohydrate to protein in the EPS was inferred to be essential for bioflocculation.

  • PDF