DOI QR코드

DOI QR Code

Flocculation of microalgae using extracellular polymeric substances (EPS) extracted from activated sludge

  • Dong, Dandan (Program in Environmental Technology and Policy, Korea University) ;
  • Seo, Dongmin (Department of Electronics and Information Engineering, Korea University) ;
  • Seo, Sungkyu (Department of Electronics and Information Engineering, Korea University) ;
  • Lee, Jae Woo (Program in Environmental Technology and Policy, Korea University)
  • Received : 2017.12.02
  • Accepted : 2018.05.02
  • Published : 2018.05.25

Abstract

This study investigates the role of microbial extracellular polymeric substances (EPSs) as bioflocculants to harvest microalgae (water-microalgae separation). The EPS extracted from waste activated sludge (WAS) by heat extraction were fractionated into soluble EPS (S-EPS), loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) forms. All the EPSs facilitated the flocculation of microalgal cells from stable growth medium. Of those EPSs, the TB-EPS showed the highest flocculating activity (FA) resulting in the substantial decrease in the amount of EPS added in terms of total organic carbon (TOC) during flocculation. The FA of microalgae was improved with the increase in TB-EPS dose, however, excessive dose of TB-EPS adversely affected it due to destabilization. Both LB- and TB-EPS could be utilized for flocculating microalgae as a sustainable option to the existing chemical-based flocculants. In addition to the conventional assessments, the effectiveness of the two bioflocculants for floc forming was also confirmed using a novel assessment of lens-free shadow imaging technique (LSIT), which was firstly applied for the rapid and quantitative assessment of microalgal flocculation.

Keywords

Acknowledgement

Grant : Waste to Energy and Recycling Human Resource Development Project

Supported by : Korea Agency for Infrastructure Technology Advancement (KAIA)

References

  1. Chen, C., Yeh, K., Aisyah, R., Lee, D. and Chang, J. (2011), "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review", Bioresource Technol., 102(1), 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
  2. Feng, Y., Li, C. and Zhang, D. (2011), "Lipid production of Chlorella vulagaris cultured in artificial wastewater medium", Bioresource Technol., 102(1), 101-105. https://doi.org/10.1016/j.biortech.2010.06.016
  3. Frolund, B., Palmgren, R., Keiding, K. and Nielsen, P.H. (1996), "Extraction of extracellular polymers from activated sludge using a cation exchange resin", Water Res., 30(8), 1749-1758. https://doi.org/10.1016/0043-1354(95)00323-1
  4. Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q. Y. and Liang, Y. (2009), "Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent", J. Hazard. Mater., 164(2), 1517-1522. https://doi.org/10.1016/j.jhazmat.2008.09.072
  5. Grima, E.M., Belarbi, E.H., Fernandez, F.A., Medina, A.R. and Chisti, Y. (2003), "Recovery of microalgal biomass and metabolites: Process options and economics", Biotech. Adv., 20(7-8), 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2
  6. Guo, J., Yu, J., Xin, X., Zhou, C., Cheng, Q., Yang, H. and Nengzi L. (2015), "Characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover", Bioresource Technol., 177, 393-397. https://doi.org/10.1016/j.biortech.2014.11.066
  7. He, B., Ye, J., Yin, H., Qin, H., Yu, L., Zhang, N. and Peng, H. (2011), "Production and characteristics of bioflocculant from azotobacter", Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2011), Wuhan, China, May.
  8. Hiraoka, Y., Sedat, J.W. and Agard, D.A. (1987), "The use of a charge-coupled device for quantitative optical microscopy of biological structures", Science, 238(4823), 36-41. https://doi.org/10.1126/science.3116667
  9. Ibrahim, R.I., Mohammad, A.W. and Wong, Z.H. (2015), "Optimization of POME treatment process using microalgae and ultrafiltration", Membr. Water Treat., 6(4), 293-308. https://doi.org/10.12989/mwt.2015.6.4.293
  10. Karapanagiotis, N.K., Rudd, T., Sterritt, R.M. and Lester, J.N. (1989), "Extraction and characterisation of extracellular polymers in digested sewage sludge", J. Chem. Technol. Biotech., 44(2), 107-120. https://doi.org/10.1002/jctb.280440203
  11. Kim, S.B., Bae, H., Koo, K.I., Dokmeci, M.R., Ozcan, A. and Khademhosseini, A. (2012), "Lens-free imaging for biological applications", J. Lab. Automation, 17(1), 43-49. https://doi.org/10.1177/2211068211426695
  12. Lardon, L., Helias, A., Sialve, B., Steyer, J.P. and Bernard, O. (2009), "Life-cycle assessment of biodiesel production from microalgae", Environ. Sci. Technol., 43(17), 6475-6481. https://doi.org/10.1021/es900705j
  13. Laspidou, C.S. and Rittmann, B.E. (2002), "A unified theory for extracellular polymeric substances, soluble microbial products and active and inert biomass", Water Res., 36(11), 2711-2720. https://doi.org/10.1016/S0043-1354(01)00413-4
  14. Lee, S., Kim, S., Kim, J., Kwon, G., Yoon, B. and Oh, H. (1998), "Effects of harvesting method and growth stage on the flocculation of the green alga Botyrococcus braunii", Lett. Appl. Microbiol. 27(1), 14-28. https://doi.org/10.1046/j.1472-765X.1998.00375.x
  15. Lee, D.H. (2011), "Algal biodiesel economy and competition among bio-fuels", Bioresource Technol., 102(1), 43-49. https://doi.org/10.1016/j.biortech.2010.06.034
  16. Lee, J., Kwak, Y.H., Paek, S.H., Han, S. and Seo, S. (2014), "CMOS image sensor-based ELISA detector using lens-free shadow imaging platform", Sensor. Actuat. B: Chem., 196(1), 511-517. https://doi.org/10.1016/j.snb.2014.02.059
  17. Liu, H. and Fang, H.H. (2002), "Extraction of extracellular polymeric substances (EPS) of sludge", J. Biotechnol., 95(3), 249-256. https://doi.org/10.1016/S0168-1656(02)00025-1
  18. McGarry, M.G. (1970), "Algal flocculation with aluminum sulfate and polyelectrolytes", Journal (Water Pollution Control Federation), 42(5), R191-R201.
  19. McSwain, B.S., Irvine, R.L., Hausner, M. and Wilderer, P.A. (2005), "Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge", Appl. Environ. Microbiol., 71(2), 1051-1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  20. Papazi A., Makridis P. and Divanach P. (2010), "Harvesting Chlorella minutissima using cell coagulants", J. Appl. Phycol., 22(3), 349-355. https://doi.org/10.1007/s10811-009-9465-2
  21. Prabakaran, P. and Ravindran, A.D. (2012), "Scenedesmus as a potential source of biodiesel among selected microalgae", Current Sci., 616-620.
  22. Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J. H., Posten, C. and Hankamer, B. (2008), "Second generation biofuels: High-efficiency microalgae for biodiesel production", Bioenergy Res., 1(1), 20-43. https://doi.org/10.1007/s12155-008-9008-8
  23. Seo, D., Oh, S., Lee, M., Hwang, Y. and Seo, S. (2017), "A fieldportable cell analyzer without a microscope and reagents", Sensors, 18(1), 85. https://doi.org/10.3390/s18010085
  24. Seo, S., Isikman, S.O., Sencan, I., Mudanyali, O., Su, T.W., Bishara, W. and Ozcan, A. (2010), "High-throughput lens-free blood analysis on a chip", Analytical Chem., 82(11), 4621-4627. https://doi.org/10.1021/ac1007915
  25. Sheng, G.P. and Li, X.Y. (2010), "Extracellular polymeric substances (EPS) microbial aggregates in biological wastewater treatment systems: A review", Biotechnol. Adv., 28(6), 882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  26. Shih, I., Van, Y., Yeh, L., Lin, H. and Chang, Y. (2001), "Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties", Bioresour. Technol., 78(3), 267-272. https://doi.org/10.1016/S0960-8524(01)00027-X
  27. Sing, S. F., Isdepsky, A., Borowitzka, M. A. and Moheimani, N. R. (2013), "Production of biofuels from microalgae", Mitigation Adaptation Strategies Global Change, 18(1), 47-72. https://doi.org/10.1007/s11027-011-9294-x
  28. Skrede, A., Mydland, L.T., Ahlstrom, O., Reitan, K.O., Gislerod, H.T. and Overland, M. (2011), "Evaluation of microalgae as sources of digestible nutrients for monogastric animals", J. Anim. Sci., 20(1), 131-142.
  29. Sun, P., Hui, C., Yang, S., Wan, L., Zhang, Q. and Zhao, Y. H. (2015), "Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystics aeruginosa removal", Scientific Reports, 5, 17465. https://doi.org/10.1038/srep17465
  30. Tenny M.W., Echelberger W.F. Jr., Schuessler R.G. and Pavoni J.L. (1969), "Algae flocculation with synthetic organic polyelectrolytes", Appl. Microbiol., 18(6), 965-971.
  31. Ugbenyen, A.M. and Okoh, A.I. (2014), "Characteristics of a bioflocculant produced by a consortium of Cobetia and Bacillus species and its application in the treatment of wastewaters", Water SA, 40(1), 139144.
  32. Waterbury, J.B. and Stanier, R.Y. (1981), "Isolation and growth of cyanobacteria from marine and hypersaline environments", The Prokaryotes, Springer, Germany, 221-223.
  33. Yu, G.H., He, P.J. and Shao, L.M. (2009), "Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability", Bioresource Technol., 100(13), 3193-3198. https://doi.org/10.1016/j.biortech.2009.02.009
  34. Zhang, A., Liu, Z., Chen, Y., Kuschk, P. and Liu, Y. (2014), "Effects of EPS on membrane fouling in a hybrid membrane bioreactor for municipal wasterwater treatment", Membr. Water Treat., 5(1), 1-14. https://doi.org/10.12989/mwt.2014.5.1.001

Cited by

  1. Advanced wastewater treatment using filamentous algae in raceway ponds with underwater light pp.1556-7230, 2018, https://doi.org/10.1080/15567036.2018.1549142
  2. Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass-A Review vol.13, pp.1, 2018, https://doi.org/10.3390/w13010027
  3. 미세조류 분리/회수를 위한 세포외 고분자물질 생물 응집제 활용 vol.35, pp.1, 2018, https://doi.org/10.11001/jksww.2021.35.1.063
  4. Environmental applications of microbial extracellular polymeric substance (EPS): A review vol.287, pp.None, 2018, https://doi.org/10.1016/j.jenvman.2021.112307