• Title/Summary/Keyword: Extinction boundary

Search Result 43, Processing Time 0.025 seconds

Study of the Compressible Nozzle Flow in a Gas Circuit Breaker (가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구)

  • Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

A Study on Downstream Interaction between Methane-air and Syngas-air Premixed Flames (메탄-공기/합성가스-공기 예혼합화염의 후류 상호 작용에 대한 연구)

  • Park, Jeong;Kwon, Oh Boong;Keel, Sang-In;Yun, Jin-Han
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.8-17
    • /
    • 2016
  • Downstream interactions between lean premixed flames with mutually different fuels of syngas and $CH_4$ have been numerically investigated particularly on and near lean extinction limits. The interaction characteristics between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames were shown to be quite different from those between the same hydrocarbon flames. The lean extinction boundaries were of slanted shape, thereby implying strong interactions. The weaker flames had negative flame speeds on the upper extinction boundaries, whereas the weaker flame speeds on the lower extinction boundaries were both negative and positive. The results also showed that the flame interaction characteristics did not follow the general tendency with the dependency of Lewis number in downstream interactions between the same hydrocarbon flames. Importance of chemical interaction in flame characteristics is discussed in the downstream interactions between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames.

Extinction Characteristic of AP/HTPB Composite Solid Propellant by Rapid Depressurization (급감압에 의한 AP/HTPB 복합고체추진제의 소화 특성)

  • Kim, Daeyu;Yoon, Jisang;Lee, Kukjin;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 2019
  • Exposure to a rapidly depressurized environment causes extinction of a burning solid propellant. Experiments have been conducted to determine the rate of depressurization required to extinguish a burning solid propellant. For this purpose, a depressurization combustor was designed and fabricated. The results of this experiment were used to determine the boundary between extinction and non-extinction of AP/HTPB solid propellants under different propellant compositions. Experimental results show that the initial and final pressures have a considerable effect on the critical depressurization rate.

Estimation of Particle Mass Concentration from Lidar Measurement (라이다 관측자료를 이용한 미세먼지 농도 산정)

  • Kim, Man-Hae;Yeo, Huidong;Sugimoto, Nobuo;Lim, Han-Cheol;Lee, Chul-Kyu;Heo, Bok-Haeng;Yu, Yung-Suk;Sohn, Byung-Ju;Yoon, Soon-Chang;Kim, Sang-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Vertical distribution of particle mass concentrations was estimated from 8-year elastic-backscatter lidar and sky radiometer data, and from ground-level PM10 concentrations measured in Seoul. Lidar ratio and mass extinction efficiency were determined from aerosol optical depth (AOD) and ground-level PM10 concentrations, which were used as constraints to estimate particle mass concentration. The mean lidar ratio (with standard deviation) and mass extinction efficiency for the entire 8-year study period were $60.44{\pm}23.17$ sr and $3.69{\pm}3.00m^2g^{-1}$, respectively. The lidar ratio did not vary significantly with the ${\AA}ngstr{\ddot{o}}m$ exponent (less than ${\pm}10%$); however, the mass extinction efficiency decreases to $1.82{\pm}1.67m^2g^{-1}$ (51% less than the mean value) when the ${\AA}ngstr{\ddot{o}}m$ exponent is less than 0.5. This result implies that the particle mass concentration from lidar measurements can be underestimated for dust events. Seasonal variation of the particle mass concentration estimated from lidar measurements for the boundary layer, was quite different from ground-level PM10 measurements. This can be attributable to an inhomogeneous vertical distribution of aerosol in the boundary layer.

A new method for mapping visible-near infrared light levels in Fruit

  • Fraser, Daniel G.;Jordan, Robert B.;Kunnemeyer, Rainer;Mcglone, V. Andrew
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1128-1128
    • /
    • 2001
  • We have developed a probe for measuring the light levels inside illuminated fruit. The probe has minimal effect on the light levels being measured and enables the sampling of the light flux at any point within the fruit. We present experimental light extinction rates within apple, nashi, kiwifruit, and mandarin fruit. Moving from the illuminated side to the far side of the fruit, the extinction level follows an initial power law decay as the light diffuses into the fruit then reduces to an exponential decay through the rest of the fruit. Significant variations in the rates of light extinction are found in the core, skin and differing flesh regions. Monte Carlo simulations of the light distribution in fruit, which use scattering and absorption coefficients for the diffusely scattering tissue, and boundary conditions for the skin effects, produce results that follow the experimental results closely.

  • PDF

Radiation-Induced Oscillatory Instability in Diffusion Flames (복사 열손실로 인한 확산 화염의 맥동 불안정에 관한 연구)

  • Sohn, Chae Hoon;Kim, Jong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1185-1191
    • /
    • 1999
  • Radiation-induced oscillatory instability in diffusion flames is numerically investigated with nonlinear dynamics considered. As the simplest flame model, a diffusion flame established in the stagnant mixing layer is employed with optically thin gas-phase radiation and unity Lewis numbers for all species. Attention is focused on the radiation-induced extinction regime, which occurs at large $Damk\ddot{o}hler$ number. Once the steady flame structure is obtained for a prescribed value of the initial $Damk\ddot{o}hler$ number, transient solution of the flame is calculated after a finite amount of the $Damk\ddot{o}hler$-number perturbation is imposed on the steady flame. Transient evolution of the flame exhibits three types of flame-evolution behaviors, namely decaying oscillatory solution, diverging solution to extinction and stable limit-cycle solution. A dynamic extinction boundary is identified for laminar flamelet library.

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

Quantification of rock deformation using wavy extinction of quartz grain (석영의 파동소광 강도를 이용한 암석 변형의 정량화)

  • 정원석;나기창;정상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.65-73
    • /
    • 2002
  • The wavy extinction of quartz grains can be used as a good indicator to show the degree of rock deformation. To determine degree of the rock deformation, intensity of wavy extinction (IWE) of quartz grains was measured by using polarizing microscope, digital camera, and NIH image (or Scion Image). In this experiment, the measurement was performed along the line perpendicular to the subgrain boundary of wavy extinction. IWE was measured when a quartz grain shows maximum extinction in polarizing microscope. NIH image was represented in terms of 256 gray-scale brightness, which was associated with intensity of the wavy extinction. IWE was determined by the degree of brightness versus the measuring length of a quartz grain. IWE was analysed in the distribution chart with the collection unit of 5. Regarding the characteristics of data distribution, the median between the mode and the median of the histogram is defined as a representative value for the IWE, and this value is subdivided into the five levels of rock deformation zones (lowest- or non-, low-, medium-, high-, and highest deformation) with their respective indices (D1, D2, D3, D4, and D5). The correlation between the Eonyang Granite and the Yangsan Fault was investigated by using the indices. The results indicate that IWE values decreased away from the fault.

Retrieval of Lidar Overlap Factor using Raman Lidar System (라만 라이다 시스템을 이용한 라이다 중첩함수 산출)

  • Noh, Young-M.;Muller, Detlef;Shin, Dong-Ho;Lee, Kyung-Hwa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.450-458
    • /
    • 2009
  • The range-dependent overlap factor of a lidar system can be determined experimentally if a Raman backscatter signal by molecule is measured in addition to the usually observed elastic backscatter signal, which consists of a molecular component and a particle component. The direct determination of the overlap profile is presented and applied to a lidar measurement according to variation of telescope field-of-view and distance between telescope and transmitting laser. The retrieval of extinction coefficient by Raman method can generate high errors for heights below planetary boundary layer if the overlap effect is ignored. The overlap correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

THE $^{13}CO$ DISTRIBUTION AND CORRELATION WITH EXTINCTION IN L134

  • MINN YOUNG KEY;LEE HYE KYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • We mapped the $^{13}CO$ line in the dark nebula L134 using the 14-m Taeduck radio telescope with a 57 arcsec beam and one beam spacing. The cloud has a spherical shape with an intensity peak ridge extended from the northwest to the southeast directions. The halfwidth and the radial velocity of the lines peak at the region of the cloud center. The radial velocity decreases from the cloud center towards the north and south directions. The integrated line intensity distributions in the space-velocity plane show some structure and a velocity gradient. The $^{13}CO$ and $H_2CO$ clouds and dark clouds are closely related in space in shape, outer boundary, and intensity peak positions. The $^{13}CO$ integrated line intensity is linearly proportional to the visual extinction.

  • PDF