• Title/Summary/Keyword: External surface condition

Search Result 176, Processing Time 0.027 seconds

Finite element stress analysis on supporting bone by tripodal placement of implant fixture (유한요소법을 이용한 임플란트 고정체의 삼각배열에 따른 지지골의 응력 분석)

  • Son, Sung-Sik;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • Purpose: This study was to propose the clear understanding for stress distribution of supporting bone by use of staggered buccal offset tripodal placement of fixtures of posterior 3 crown implant partial dentures. We realized posterior 3 crown implant fixed partial dentures through finite element modeling and analysed stress effect of implant arrangement location to supporting bone under external load using finite element method. Method: To understand stress distribution of 3 crown implant fixed partial dentures which have 2 different arrangement by finite element analysis. In each model, for loading condition, we applied $45^{\circ}$ oblique load to occlusal surface of crown and applied 100 N for 3 crown individually(total 300 N) for imitating possible oral loading condition. at this time, we calculated Von Mises stress distribution in supporting bone through finite element method. Result: When apply $45^{\circ}$ oblique load to in-line arrangement model, maximum stress result for 100 N for each 3 crown 47.566MPa. In tripodal placement, result for 1mm buccal offset tripodal placement implant model was maximum distributed load 51.418MPa, so result was higher than in-line arrangement model. Conclusion: In stress distribution result by placement of implant fixture, the most effective structure was in-line arrangement. The tripodal placement does not effective for stress distribution, gap cause more damage to supporting bone.

  • PDF

Detection of Elastic Waves Using Stabilized Michelson Interferometer (광로차 보상회로가 부착된 마이켈슨 간섭계에 의한 탄성파 신호검출)

  • Kim, Y.H.;So, C.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.32-41
    • /
    • 1994
  • The stabilized Michelson interferometer was developed in order to measure micro dynamic displacement at the surface of solids due to elastic wave propagation. The stabilizer was designed to compensate light path disturbances using a reference mirror driven by piezoelectric actuator. Using stabilizer, the effect of external vibration was reduced and the quadrature condition was satisifed. As the results, the output of photodetector had maximum sensitivity and linearity. The minimum detectable displacement was 0.3nm at the band width of 10 MHz. The epicentral displacements due to the glass capillary breaks and the steel ball drop impact were measured using the developed interferometer and the results were compared with the calculated one.

  • PDF

Aging Effect of Magnetic Properties in Amorphous $Fe_{78}B_{13}Si_9$ Alloy (비정질 $Fe_{78}B_{13}Si_9$ 합금의 자기적 특성의 경년 열화)

  • Kim, Ki-Uk;Min, Bog-Ki;Song, Jae-Sung;Hong, Jin-Wan;Cho, Hyun-Jin;Lee, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.49-51
    • /
    • 1988
  • The heat treatment condition and aging behavior of melt spun amorphous $Fe_{78}B_{13}Si_9$(Metglas 26058-2) were studied with investigating its magnetic properties, i.e., Br, $B_l$, Hc. The optimum heat treatment condition was $400^{\circ}C$, 1 hour under the external field of 200e, and aging was due to the surface oxidation and the appearance of local CSRO (chemical short lange order) with time and temperature. In addition. we investigated the effects of the thickness of the amorphous ribbons on the magnetic properties and aging effect of them.

  • PDF

Sensorless Control Algorithm of a Surface Mounted PM Synchronous Motor Under Naturally Rotating by Load (외부부하에 의해 회전중인 표면부착형 영구자석동기전동기의 센서리스 제어 알고리즘)

  • Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • PM synchronous motor may be rotated to an arbitrary direction and speed by outside wind under natural condition in cases where the fan is applied outside, such as in vehicle radiators and outdoor air-conditioners. Sensorless controls that cannot detect rotor position requires additional sensorless control algorithm because a rotor is rotated by an external load. In this study, the sensorless control of a PM synchronous motor under naturally rotating condition is proposed. The natural rotation conditions are classified as forward high-speed rotation, reverse high-speed rotation, and low-speed rotation. Experiment results verify the performance of the sensorless control, including the rotor speed and position detection at natural rotation mode and switch to the closed-loop sensorless control.

An Electromyographic Analysis of Back muscle Activity when Subjects are Lifting Static Loads in One Hand (정적 부하의 비대칭적 적용에 따른 등 근육의 근전도 분석)

  • Kim, Tae-Young;Park, Eun-Young;Lee, Eung-Sang
    • Physical Therapy Korea
    • /
    • v.4 no.1
    • /
    • pp.78-86
    • /
    • 1997
  • Back muscles play an important role in protecting the spine. Epidemiological studies have shown that loads imposed on the human spine during daily living play a significant role in the onset of low back pain. No previous study has attempted to correlate the response of the trunk musculature with the type of external load. The purpose of this study was to use surface electromyography (EMG) to quantify the relative demands placed on the back muscles while lifting loads in one hand. Forty asymptomatic, twenty year-old subjects stood while lifting loads of 10% of body weight(BW) unilaterally. All EMG data were normalized to a percentage of the EMG voltage produced during no-load standing(%EMG). Our major analysis involved a paired t-test for repeated measures. Of particular note was the fact that the ipsilateral 10% of BW condition produced statistically less % EMG change than did the contralateral 10% of the condition.

  • PDF

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Development of Intelligent Robot Vision System for Automatic Inspection of Optical Lens (광학렌즈 자동 검사용 지능형 로봇 비젼 시스템 개발)

  • 정동연;장영희;차보남;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.247-252
    • /
    • 2004
  • Developed shape awareness technology and vision technology for optical ten slant in this research and including external form state of lens for the performance verification developed so that can be good achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data md standard reflex data mutually. Developed system to smallest 1pixel unit though measuring is possible 1pixel as 3.7$\mu\textrm{m}$${\times}$3.7$\mu\textrm{m}$(0.1369${\times}$10/sub-1/$\textrm{mm}^2$) the accuracy to 10/sub-1/mm minutely measuring is possible performance verification and trust ability through an experiment prove.

  • PDF

A Study on the Stiffness of Tire (타이어의 강성계수에 관한 고찰)

  • 이상선;반재삼;김항우;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

A Study on the Structural Safety of Photovoltaic System Mounted on Balcony Railing (발코니 거치 태양광 발전장치의 구조적 안전성에 관한 연구)

  • Jo, Jeong-Jae;Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • This study aims to evaluate the structural safety of the balcony photovoltaic systems easily installed or moved on the buildings. Also, the systems are controlled by solar altitudes focused on its mobility rather than high efficiency generation performance thereof. The results of the study are as follows. Two types of typical photovoltaic systems which can be mounted on the balcony are proposed, and, the sizes of the systems are designed to be adjusted within certain ranges of the frames in order to attach the various rail sizes. To evaluate the structural safety of the proposed systems, several simulation evaluations are performed on the safety evaluation standards by the Ministry of Construction-Transportation and KCI 2007. The results are that the proposed plans are reasonable in terms of stress and deflection in the structural aspects at the wind pressures of $1,907(N/m^2)$ of external wall surface under the condition of wind velocity higher than 25(m/s).

ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF THE MAIN WING SECTION OF KC-100 AIRCRAFT (KC-100 항공기 주날개의 결빙에 의한 공력 영향성 연구)

  • Lee, C.H.;Sin, S.M.;Jung, S.K.;Myong, R.S.;Cho, T.H.;Jung, J.H.;Jeong, H.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.464-467
    • /
    • 2010
  • Ice accretion on aircraft surface in icing condition induces external shape changes that may result in a hazard factor for aircraft safety. In case of aircraft main wing with high lift equipment, ice accretion is observed around leading edge and flap. During the design phase, location of ice accretion and associated aerodynamic characteristics must be investigated. In this study, icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft are investigated using an Eulerian-based FENSAP-ICE code in various icing conditions.

  • PDF