• Title/Summary/Keyword: External butt joint connection

Search Result 8, Processing Time 0.034 seconds

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

Considerations in implant crestal module to preserve peri-implant tissue (임플란트 주위 조직 보존을 위한 임플란트 경부의 디자인에 관한 고찰)

  • Kim, Hong-Jun;Kim, Jee-Hwan;Kim, Sung-Tae;Lee, Jae-Hoon;Park, Young-Bum
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • Purpose: The peri-implant soft tissue is remodeled by the initial marginal bone resorption affecting the prognosis and esthetic result of treatment. Thus various designs on implant neck design are studied to preserve peri-implant bone. The purpose of this study is to review on the causes of initial marginal bone resorption, the configuration of peri-implant soft tissue, and the implant crestal module favorable in preserving peri-implant tissue. Materials and methods: The studies on the causes of initial marginal bone resorption and the implant crestal modules are researched and reviewed using Pubmed database. The implant crestal modules including one piece and two-piece implant, internal and external hex abutment, taper and butt joint connection, scalloped design abutment, and platform switching concept are reviewed. Results: A number of clinical and experimental studies preferred one piece implant to two-piece in preserving initial peri-implant tissue. For two piece implants, internal hex abutment and taper joint connection appear more favorable than external hex abutment and butt joint connection relatively. Controversial issues still exist on scalloped design requiring more studies on it. Although the rationale is not certain, the concept of platform switching seems favorable in preserving initial peri-implant tissue based on clinical and experimental studies. Conclusion: Each implant crestal module contains its own advantages and disadvantages with various controversial issues. In the aspect of preservation of initial peri-implant tissue, however, one-piece implant seems beneficial. In cases when two-piece implant is more appropriate due to prosthodontic concerns or any other problems, the application of platform switching concept, internal connection abutment, and taper joint connection may be favorable for the preservation of peri-implant tissues.

Influence of Implant Fixture-Abutment Connection and Abutment Design on Mechanical Strength (임플란트 고정체-지대주 연결부 및 지대주 디자인이 기계적 강도에 미치는 영향)

  • Chun, Mi-Hyun;Jeong, Chang-Mo;Jeon, Young-Chan;Eom, Tae-Gwan;Yoon, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.269-281
    • /
    • 2008
  • Fatigue or overload can result in mechanical problems of implant components. The mechanical strength in the implant system is dependent on several factors, such as screw and fixture diameters, material, and design of the fixture-abutment connection and abutment. In these factors, the last rules the strength and stability of the fixture-abutment assembly. There have been some previous reports on the mechanical strength of the fixture-abutment assembly with the compressive bending test or short-term cyclic loading test. However, it is restrictive to predict the long-term stability of the implant system with them. The purpose of this study was to evaluate the influence of the design of the fixture-abutment connection and abutment on the mechanical strength and failure mode by conducting the endurance limit test as well as the compressive bending strength test. Tests were performed according to a specified test(ISO/FDIS 14801) in 4 fixture-abutment assemblies of the Osstem implant system: an external butt joint with Cemented abutment (group BJT), an external butt joint with Safe abutment (group BJS), an internal conical joint with Solid abutment (group CJO), and an internal conical joint with ComOcta abutment (group CJT). The following conclusions were drawn within the limitation of this study. Compressive bending strengths were decreased in order of group BJS(1392.0N), group CJO(1261.8N), group BJT(1153.2N), and group CJT(1110.2N). There were no significant differences in compressive bending strengths between group BJT and group CJT(P>.05). Endurance limits were decreased in order of group CJO(600N), group CJT(453N), group BJS(360N), and group BJT(300N). 3. Compressive bending strengths were influenced by the connection and abutment design of the implant system, however endurance limits were affected more considerably by the connection design.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study (내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향)

  • Seol, Hyon-Woo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: To evaluate the axial displacement of implant-abutment assembly after cyclic loading in internal tapered connection system. Materials and methods: External butt-joint connection implant and internal tapered connection implant were connected with three types of abutment for cement-retained prostheses, i.e. external type abutment (Ext group), internal tapered 1-piece abutment (Int-1 group), and internal tapered 2-piece abutment (Int-2 group). For each group, 7 implants and abutments were used. The implantabutments assemblies were clamped into the implant holder for vertical loads. A dynamic cyclic loading was applied for $150{\pm}10N$ at a frequency of 4 Hz. The amount of axial displacement of the abutment into the implant was calculated at each cycle of 0, 5, 10, 50, 100, 1,000, 5,000, and 10,000. A repeated measures analysis of variance (ANOVA) for the overall effect of cyclic loading and the pattern analysis by linear mixed model were used for statistical analysis. Differences at P<.05 were considered statistically significant. Results: The mean axial displacement after 10,000 cycles were $0.714{\pm}0.488{\mu}m$ in Ext group, $5.286{\pm}1.604{\mu}m$ in Int-1 group, and $11.429{\pm}1.902{\mu}m$ in Int-2 group. In the pattern analysis, Int-1 and Int-2 group showed continuous axial displacement at 10,000 cycles. There was no declining pattern of axial displacement in the Ext group. Conclusion: The pattern of linear mixed model in Ext group showed no axial displacement. There were continuous axial displacements in abutment-implant assemblies in the Int-1 and Int-2 group at 10,000 cycles. More axial displacement was found in Int-2 group than in Int-1 group.