• Title/Summary/Keyword: External Wind

Search Result 528, Processing Time 0.028 seconds

Protection for DFIG using the d-q Equivalent Circuit (d-q 등가회로를 이용한 이중여자 유도발전기 보호)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun;Park, Goon-Cherl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2173-2178
    • /
    • 2008
  • A doubly-fed induction generator(DFIG) system has been widely used in the modem wind turbines due to variable-speed operation, high efficiency and small converter size. It is well known that an inter-turn fault of a generator is very difficult to be detected. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper proposes a protection algorithm for a DFIG using the d-q equivalent circuit in the time domain. In the case of a DFIG, the voltages and currents of the rotor side as well as the voltages and currents of the stator are available. The proposed algorithm estimates the instantaneous(i.e., converted into the stationary frame) induced voltages from the rotor and the stator sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects the inter-turn fault. The algorithm can detect a inter-turn fault of a winding. The performance of the proposed algorithm is validated using a PSCAD/EMTDC simulator under inter-turn fault conditions and normal operating conditions such as an external fault and the change of the wind speed.

Structural Safety Analysis of FPWEC During Sea Transportation (부유식 파력 장치의 해상운송에 대한 구조 안전성 검토)

  • Cho, Kyu Nam;Kim, Yong Dae;Bae, Jae Hyeong;Shin, Seung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.250-255
    • /
    • 2016
  • Ocean environmental data such as tide, wind, significant wave height etc. along the expected route were collected and analyzed to secure the safe towing and installation of floating pendulum wave energy converter(FPWEC) at planned sea area. Data from Korea Meteorological Administration(KMA) and Korea Hydrographic and Oceanographic Agency(KHOA) were reviewed and those were used to estimate the external forces exerting on the FPWEC during the towing operation. ANSYS system was used for the structural analysis of the FPWEC which is subject to complex environmental load to confirm the safety.

A literature studies on the ja-shi(자시) (자시에 關한 文獻的 考察(原因과 治方을 爲主로))

  • Park, Su-yeon;Choi, Jung-hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.13 no.1
    • /
    • pp.209-236
    • /
    • 2000
  • This study has been carried out to investigate pathogenic factor and medicine of ja-shi(자시) by referring to literatures. The results were obtained as follows. 1. In oriental medicine, Chashi(차시), Hamshichang(함시창), Hamshi(함시), Jabal(자발), Shichang(시창), Nojaon(로자온), Hamaon(하마온), Jokshiong(적시옹), Hamshidok(함사독), Tabshijong(탑사종), Shijong(시종) were the other names of ja-shi(자시). 2. The pathogenic factors of ja-shi(자시) are wind-heat, wetness-heat, Kihyeolungche(기혈응체), stomach-heat. wetness, wind wetness, and liking greasy and sweet food. 3. In the internal therapy of ja-shi(자시), Bojesodokum(普濟消毒飮), Sasunchunglyangum(四順淸凉飮), Takljsodoksan(托裏消毒散), Shihogalguntang(柴胡葛根湯), Sungsohwan(醒消丸), Gamisodokum(加味消毒飮) and etc. were used. And Radix glycyrrhizae(甘草), Fructus forsythiae(連翹), Radix angelicae gogantis(當歸), Radix scutellariae(황기), Radix bupleuri(柴胡), Radix p]atycodi(桔梗), Radix Ledebounellae(防風), Frustus arctii(牛蒡子), Rhizoma cimicifugae(升麻) and ete. were used as medicine. 4. In the external therapy of ja-shi(자시), Youigumhwangsan(如意金黃散), Okiogo(玉露膏), Igumsan(二金散), Gumhwangsan(金黃膏), Nungo(嫩膏) and etc. were used. And Radix angelicae dahuricae(白芷), Cortex phellodendri(黃栢), Rhizoma rhei(大黃), Indigo maturalis(靑黛), Radix glycyrrhizae(甘草) and etc. were used as medicine.

  • PDF

A Study on Modeling of Unmanned Gantry Crane (1) (UGC 모델링에 관한 연구(I))

  • 박경택;김두형;신영재;박찬훈;김용선
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.333-344
    • /
    • 1999
  • Currently many studies on the unmanned gantry crane for the automated container terminal are accomplished. This is needed for the development of large scale, automation, high speed, unmanned system and information system in port facility. In order to do efficient container handling job in port yard, the automated handling system is well adapted to the job environments and all-season weather, In order to realize the automatic and unmanned system for container handling job, the required functions and main structure system are studied. The major problems of operation of the conventional gantry crane are that the vibration of gantry structure body is occurred by operation and that high-speed and precision position-velocity control and the capability to dope to the external disturbances caused by the wind, rain, fog and job environments. In this paper, the fundamental study for establishment of the concept and the dynamic modelling of the major sub system of the unmanned gantry crane is presented. These studies are useful for design and manufacturing of the new concept model of the unmanned gantry crane for efficient operation of the automated container terminal.

  • PDF

Study on Behavior Characteristics of L-Type Flange Bolt Connection for Supporting Structures of Wind Turbines (풍력터빈 지지구조물 L형 플랜지 볼트 접합부의 거동 특성에 관한 연구)

  • Jung, Dae-Jin;Hong, Kwan-Young;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.279-286
    • /
    • 2021
  • In this study, we investigated the behavior characteristics of the L-type flange bolt connection, which is used to connect upper and lower flanges having L-type ring sections, by bolts. This connection is mainly used in domestic wind turbine structures, wherein it is a vital component as any imperfection could cause the collapse of the entire structural system. Therefore, understanding the behavior characteristics of the L-type flange bolt connection is imperative. In this study, the connection's response to external force was simulated using finite element (FE) analysis and the FE model was idealized to behave as a single L-type bolt flange. The variation in the bolt tension and the L-type flange stress were analyzed to understand the behavior characteristics of the connection. Moreover, the bolt-load function models proposed by Petersen, Schmidt/Neuper and VDI 2230, theoretically expressing a relation between bolt tension and external force, were compared to evaluate the suitability of the FE analysis and analyze the significant behavior characteristics of the connection. Furthermore, the changes in the bolt-load curve due to the variations in the partial dimensions of the L-type flange bolt connection were analyzed.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

A Second Order Sliding Mode Control of Container Cranes with Unknown Payloads and Sway Rates (미지의 부하와 흔들림 각속도를 갖는 컨테이너 크레인의 2차 슬라이딩 모드 제어)

  • Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • This paper introduces a sway suppression control for container cranes with unknown payloads and sway rates. With no priori knowledge concerning the magnitude of payload mass and sway rate, the proposed control maintains superior sway suppressing and trolley positioning against external disturbances. The proposed scheme combines a second order sliding mode control and an adaptive control to cope with unknown payloads. A second order sliding mode control without feedback of the sway rate is first designed, which is based on a class of feedback linearization methods for stabilization of the under-actuated sway dynamics of the container. Under applicable restrictions of the magnitude of payload inertia and sway rate, a linear regression model is obtained, and an adaptive control with a payload estimator is then designed, which is based on Lyapunov stability methods for the fast attenuation of trolley oscillations in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown in the existence of initial sway and external wind disturbances.

Development and Validation of the Coupled System of Unified Model (UM) and PArameterized FOG (PAFOG) (기상청 현업 모형(UM)과 1차원 난류모형(PAFOG)의 접합시스템 개발 및 검증)

  • Kim, Wonheung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.149-154
    • /
    • 2015
  • As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.

The Study of an Automatic Tracking and Pointing Method and the Regarding System for Facing Two Antennas (상호 대국의 안테나 간 자동 추적 지향 기법 및 장치 연구)

  • Gimm, Hak In;Cho, Sung Hoon;Lee, Chong Hyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.498-509
    • /
    • 2015
  • The existing mobile antenna networks in the military use have been operated by the manual pointing between two antennas. The work presented here describes the study of ATPC(Automatic Tracking and Pointing Control) system between facing antennas and the related tracking and pointing performances. This system is able to automatically track the maximum RSSI(Received Signal Strength Indication) value from the source's RF(Radio Frequency) signal and then control for maintaining the LOS(Line of Sight) between two antennas. The system has three major units; the driving unit consisting of motors, harmonic drives and encoders, the sensor unit with a GPS(Global Positioning System) and AHRS(Attitude and Heading Reference System) and the control unit regulating all the tracking and pointing events. By using PI(Proportional and Integral) controller, this system is able to properly track and point the other antenna under the external disturbance like the wind load. Both the simulation and the experimental works have been successively carried out to prove the performances of the system.

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.