• Title/Summary/Keyword: External Wind

Search Result 526, Processing Time 0.028 seconds

Dual Doppler Wind Retrieval Using a Three-dimensional Variational Method (3차원 변분법을 사용한 이중 도플러 바람장 분석)

  • Lee, SeonYong;Choi, Young-Jean;Chan, Dong-Eon
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.69-86
    • /
    • 2007
  • The characteristics of the dual-Doppler wind retrieval method based on a three dimensional variational (3DVAR) conception were investigated from the following four points of view; the sensitivity of the number of iteration, the effect of the weak constraint term, the effect of the smoothness term, and the sensitivity of the error mixing ratio of the radial velocities. In the experiment, the radial velocities relative to the Gosan and Jindo radar sites of the Korea Meteorological Administration (KMA) were calculated from the forecasting of the WRF (Weather Research and Forecast; Skamarock, 2004) model at 1330 UTC 30 June 2006, which is the one and half hour forecast from the initial time, 1200 UTC on that day. The results showed that the retrieval performance of the horizontal wind field was robust, but that of the vertical wind was sensitive to the external conditions, such as iteration number and the on/off of the weak constraint term. The sensitivity of error mixing ratio was so large that even the horizontal wind retrieval efficiency was reduced a lot. But the sensitivity of the smooth term was not so large. When we applied this method to the real mesoscale convective system (MCS) between the Gosan and Jindo radar pair at 1430 UTC 30 June 2006, the wind structure of the convective cells in the MCS was consistently retrieved relative to the reflectivity factor structure. By comparing the vertical wind structure of this case with that of 10 minutes after, 1440 UTC 30 June 2006, we got the physical consistency of our method.

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.

A Basic Study on the Effect of the Wind Pressure according to Form on the Flat Roof mounted PV System (평지붕 PV거치 시스템의 형태에 따른 풍압영향에 관한 기초연구)

  • Yun, Doo-Young;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.105-112
    • /
    • 2013
  • The new renewable energy became popular as a clean and sustainable alternative energy under the circumstances that the entire world is facing severe abnormal climate due to the use of fossil fuel, and among which, solar energy can be obtained anywhere and is not difficult to apply it into the existing buildings, which makes it possible to be widely distributed. However, as PV module is installed into a single plate system, it shows structural weaknesses which are vulnerable to wind load and give loss to design elements in external appearance. Accordingly, this study planned one-step parallel system to complement the problems occurring from a single plate system and used STAR-CCM+ V.8 made by CD-Adapco, a computational fluid dynamics(CFD) simulation tool to measure wind load stability and support based on the design standards for a single plate system and one-step parallel system. Building height was limited to less than 10m and wind speed was given when increasing from 35m/s to 50m/s by 5m/s on PV system installed into the flat roof. In this case, our analysis suggested that step-one parallel system was in class 7-9 according to Beaufort's wind power classification, which did not have an impact on the fixed PV system, and the single plate system is considered to cause risks in designing wind speed in central districts because it is more than wind power class 12.

A Fluid Analysis of a Container Crane using the Computation Fluid Dynamics (전산유동해석을 이용한 컨테이너 크레인의 유동 분석)

  • Kwon Soon-Kyu;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.349-354
    • /
    • 2006
  • This study analyzed the fluid state around a container crone according to a wind direction when a wind load was applied to a container crone. The container crane for this research is a model of a 50-ton class used broadly in the current ports. The dimension of an external fluid field set up diameter, 300m, height, 200m. This study considered the change of a wind velocity according to an altitude in a criterion of a wind velocity, 50m/s, applying a power series law. An incident angle applied to an interval of 30 degrees in $0^{\circ}{\sim}180^{\circ}$ and this study carried out a computation fluid dynamics using a CFX-10. In this study, we indicate the wind pressure according to the height and section figure of each member. In addition, we suggest the wind pressure accordint to a wind direction. And we will analyze the structure stability of a container crone from the fluid-ductile analysis in the next study.

  • PDF

Experimental study on the influence of Reynolds number and roll angle on train aerodynamics

  • Huang, Zhixiang;Li, Wenhui;Liu, Tanghong;Chen, Li
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • When the rolling stocks run on the curve, the external rail has to be lifted to a certain level to balance the centrifugal force acting on the train body. Under such a situation, passengers may feel uncomfortable, and the slanted vehicle has the potential overturning risks at high speed. This paper conducted a wind tunnel test in an annular wind tunnel with φ=3.2 m based on a 1/20th scaled high-speed train (HST) model. The sensitivity of Reynolds effects ranging from Re = 0.37×106 to Re = 1.45×106 was tested based on the incoming wind from U=30 m/s to U=113 m/s. The wind speed covers the range from incompressible to compressible. The impact of roll angle ranging from γ=0° to γ=4° on train aerodynamics was tested. In addition, the boundary layer development was also analyzed under different wind speeds. The results indicate that drag and lift aerodynamic coefficients gradually stabilized and converged over U=70 m/s, which could be regeared as the self-similarity region. Similarly, the thickness of the boundary layer on the floor gradually decreased with the wind speed increase, and little changed over U=80 m/s. The rolling moment of the head and tail cars increased with the roll angle from γ=0° to γ=4°. However, the potential overturning risks of the head car are higher than the tail car with the increase of the roll angle. This study is significant in providing a reference for the overturning assessment of HST.

A Study on the Safe Manoeuvring of Ships Navigating in Shallow Water under Strong Environmental Forces (천수역에서 외력하에 근접 항행중인 선박의 안전조선에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.735-740
    • /
    • 2010
  • This paper focuses on the effects of hydrodynamic forces between overtaking and overtaken vessels moving under the influences of external forces, such as strong wind and current in shallow water, in which condition the ship handling may become very complex. The purpose of this paper is to develop a guideline for safe conducting distance between two ships according to the velocity and the significance of external disturbances.

A Study on the Control of the Slew Motion of a Single Point Moored Ship (일점계류된 선박의 불안정 거동 방지에 관한 연구)

  • Lee, Seung-Keon;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 2003
  • The slew motion of a single point moored ship by the external forces is considered to control itself. The maneuvering equations of motion are derived to express the motion of a ship. The wind forces and the wave forces are considered as the external forces of the single point moored ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The wind forces are used the results from OCIMF(1994). To control the slew motion, the bow thruster and the bridle anchoring with 2nd anchor are used in the numerical simulation.

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

Analysis of a preliminary configuration for a floating wind turbine

  • Wang, H.F.;Fan, Y.H.;Moreno, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.559-577
    • /
    • 2016
  • There are many theoretical analyses and experimental studies of the hydrodynamics for the tension leg platform (TLP) of a floating wind turbine. However, there has been little research on the arrangement of the TLP's internal structure. In this study, a TLP model and a 5-MW wind turbine model as proposed by the Minstitute of Technology and the National Renewable Energy Laboratory have been adopted, respectively, to comprehensively analyze wind effects and wave and current combinations. The external additional coupling loads on the TLP and the effects of the loads on variables of the internal structure have been calculated. The study investigates preliminary layout parameters-namely, the thickness of the tension leg body, the contact mode of the top tower on the tension leg, the internal stiffening arrangement, and the formation of the spoke structure-and conducts sensitivity analyses of the TLP internal structure. Stress is found to be at a maximum at the top of the tension leg structure and the maximum stress has low sensitivity to the load application point. Different methods of reducing maximum stress have been researched and analyzed, and the effectiveness of these methods is analyzed. Filling of the spoke structure with concrete is discussed. Since the TLP structure for offshore wind power is still under early exploration, arrangements and the configuration of the internal structure, exploration and improvements are ongoing. With regard to its research and analysis process, this paper aims to guide future applications of tension leg structures for floating wind turbine.

A Study on Correlations of the Gap Ratio of Apartment Houses Arrangement and the Wind Field (공동주택단지배치의 간극비와 바람장의 상관관계에 관한 연구)

  • Moon, Chul-Seong;Oh, Se-Gyu;Cho, Sung-Woo
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • In Korea, the ratio of population in urban areas used to be only 50.1% in 1970, but with the value risen to 90.8% in 2009, urbanization is going on rapidly. Urbanization, which occurs by the rampantly planted buildings, has become major source of raising building density, changing wind direction and reducing wind amount, and such reductions are affecting even inside the building. In each year, among the total energy consumption in Korea, residential portion takes up significant ratio, and specifically the ratio of apartment house is shown to be highest. In order to solve such problem, many studies are being conducted for the improvement of natural ventilation performance. The natural ventilation performance of apartment house are significantly determined by the characteristics of external and internal structure, but in macroscopic perspective, the performance is established fundamentally by the layout characteristics of the main building of the apartment house in preparation for wind conditions. So far researches on raising the thermal comfort through elevation of ventilation performance have been conducted actively, but many of them propose only theoretical concepts deduced through wind path analysis, and do not include any indicator to measure ventilation performance simply only with area data from layout planning stage. Therefore, in this study, gap ratio a wind field measuring indicator was developed, and after the ventilation characteristics by layout types and main building uniformity were identified, the scope of gap ratio efficient for ventilation and that of uniformity were clarified, followed by verification through simulation.