• Title/Summary/Keyword: External Space

Search Result 1,002, Processing Time 0.027 seconds

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

THERMAL CONTROL DESIGN FOR COMS (COMS 특별세션)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

Study of Analysis Technique of Flight Compatibility Test Data using Instrumented Pod for External Store (외부장착 계측포드를 사용한 비행적합성 자료 분석기법 연구)

  • Kim, Jong-Heon;Jun, Oo-Chul;Jun, Seung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.105-110
    • /
    • 2005
  • Analysis technique of flight compatibility test results using instrumented pod for external store is studied. Raw data of sensors and MIL-STD-1553B acquired from instrumented pod are analyzed separately. Besides, tuning and synchronization of sensor data enable the analysis of those two type of data simultaneously. Evaluation of analysis result shows that the analyzed data represent maneuvers of the aircraft successfully and agree the values of the real flight tests.

The effect on fatigue life for dynamic behavior of external fuel tank horizontal fin (외부 연료탱크 수평 핀 동적거동이 피로수명에 미치는 영향)

  • Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.209-214
    • /
    • 2012
  • Recently, there were significantly increased cracks failure for external fuel tank horizontal fin of F-5 aircraft. In this paper, the dynamic behavior of horizontal fin was to quantitate by using Finite Element Method. To achieve this goal, the fatigue analysis for time and frequeucy domain has been performed by using the dynamic load spectrum of speed brake. In conclusion, it was proved that fatigue life of the horizontal fin was reduced by the influence of dynamic behavior.

Kalman Filtering for Spacecraft Attitude Estimation by Low-Cost Sensors

  • Lee, Henzeh;Choi, Yoon-Hyuk;Bang, Hyo-Choong;Park, Jong-Oh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.147-161
    • /
    • 2008
  • In this paper, fine attitude estimation using low-cost sensors for attitude pointing missions of spacecraft is addressed. Attitude kinematics and gyro models including bias models are in general utilized to estimate spacecraft attitude and angular rate. However, a linearized model and a transition matrix are derived in this paper from nonlinear spacecraft dynamics with external disturbances. A Kalman filtering technique is applied and offers relatively high estimation accuracy under dynamic uncertainties. The proposed approach is demonstrated using numerical simulations.

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.

Application of Genetic Algorithm-Based Relay Search Method for Structure Design - Strengthening Problems (교대형 유전자 알고리즘을 이용한 보강설계의 최적화)

  • 정승인;김남희;장승필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.223-232
    • /
    • 2001
  • This paper describes Genetic Algorithm-Based Relay Search Method, RS-GA, which is developed in this study to search the multiple design variables in the design space. The RS-GA based on Simple-GA consists of some functions to search many variables from some wide variable space. It repeats a Simple-GA, that is the convergence process of the Simple-GA, which makes many time reiteration itself. From the results of the numerical studies, it was actually found that RS-GA can search all peak-variable from the 2D functions including 5 peaks. Finally, RS-GA applied for design-strengthening problems in composite plate girder bridges using the external prestressing technique is also verified.

  • PDF

Development of Flight Control Application for Unmanned Aerial Vehicle Employing Linux OS (리눅스 기반 무인항공기 제어 애플리케이션 개발)

  • Kim Myoung-Hyun;Moon Seungbin;Hong Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2006
  • This paper describes UAV (Unmanned Aerial Vehicle) control system which employs PC104 modules. It is controlled by application program based on Linux OS. This application consists of both Linux device driver in kernel-space and user application in user-space. In order to get data required in the unmanned flight, external devices are connected to PC104 modules. We explain how Linux device drivers deal with data transmitted by external devices and we account for how the user application controls UAV on the basis of data processed in the device driver as well. Furthermore we look into the role of GCS (Ground Control Station) which is to monitor the state of UAV.

A Study of the Spatial Effect Transparency Expressed in Clothing (복식에 표현된 투명성의 공간적 효과에 관한 연구)

  • 정연자
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.4 no.3
    • /
    • pp.27-32
    • /
    • 2002
  • This study attempted to make a comparative analysis of dress and architecture to investigate the spatial effect of transparency expressed in fashion. As a result, the following findings were obtained: First, the openness of the space. It means that the human body or the dress inside it can be seen through or the inside space is opened. The volume, form and color of the undergarment seen through this transparent outer garment brings about any change to design. Also, it can be found that the role of the space is further extended as the inside space is seen through outwardly due to the outer garment. Second, interpenetration of the internal and external space. That the human body and the undergarment are seen through due to transparent dress brings about the linkage between spaces and opens the inside outwardly. Third, the briskness of the space. The trait of transparency that exposes the object behind outwardly as it is causes its form and space to be activated and conveys its spatial briskness.

  • PDF

Exploring the Contributory Factors of Confined Space Accidents Using Accident Investigation Reports and Semistructured Interviews

  • Naghavi K., Zahra;Mortazavi, Seyed B.;Asilian M., Hassan;Hajizadeh, Ebrahim
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • Background: The oil and gas industry is one of the riskiest industries for confined space injuries. This study aimed to understand an overall picture of the causal factors of confined space accidents through analyzing accident reports and the use of a qualitative approach. Methods: Twenty-one fatal occupational accidents were analyzed according to the Human Factors Analysis and Classification System approach. Furthermore, thirty-three semistructured interviews were conducted with employees in different roles to capture their experiences regarding the contributory factors. The content analyses of the interview transcripts were conducted using MAXQDA software. Results: Based on accident reports, the largest proportions of causal factors (77%) were attributed to the organizational and supervisory levels, with the predominant influence of the organizational process. We identified 25 contributory factors in confined space accidents that were causal factors outside of the original Human Factors Analysis and Classification System framework. Therefore, modifications were made to deal with factors outside the organization and newly explored causal factors at the organizational level. External Influences as the fifth level considered contributory factors beyond the organization including Laws, Regulations and Standards, Government Policies, Political Influences, and Economic Status categories. Moreover, Contracting/Contract Management and Emergency Management were two extra categories identified at the organizational level. Conclusions: Preventing confined space accidents requires addressing issues from the organizational to operator level and external influences beyond the organization. The recommended modifications provide a basis for accident investigation and risk analysis, which may be applicable across a broad range of industries and accident types.