• Title/Summary/Keyword: External Illuminance

Search Result 24, Processing Time 0.022 seconds

An Efficient Control Sy7stem for Intelligent LED Indoor Lighting (지능형 LED 실내조명을 위한 효율적인 제어 시스템)

  • Hong, Sung-Il;Yoon, Su-Jeong;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.235-243
    • /
    • 2014
  • In this paper, we propose an efficient control system for intelligent LED indoor lighting. The proposed an efficient control system for intelligent LED indoor lighting were included to elements such as daylight intensity measured through the PIR sensor and illuminance sensor at lighting style by the schedule defined and the occupancy detection. And it was controlled lighting through to the wireless sensor network, and was designed for the energy savings. Also, the lighting control of indoor lighting based on occupancy detection detect fine movements using a PIR sensor. And an unnecessary lighting intensity control of the window-side and the inside were controlled according to daylight level measurement result using the light sensor. In daylight inflow many case, the window-side lighting was to automatically darker, and in daylight inflow less case, was designed to be automatically bright. The efficiency validate results of an efficient control system for intelligent LED indoor lighting, the brightness of the indoor light were to maximize the energy saving by controlling in real time when entering as indoor a little that external lighting or daylight.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Development of Rolling Type Light-Shelf with Adjustable Reflectivity (반사율 변경이 가능한 롤링타입형 광선반 개발)

  • Kim, Kyungsoo;Shim, Hyungjun;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose: Recently, lighting energy consumption in buildings has been gradually increasing and more studies are being carried out in order to solve this problem. Especially, the efficiency of the light-shelf system, which is a natural lighting system, has been recognized as a potential solution in addressing this problem and so various studies regarding the light-shelf system are being conducted. However, if high luminance material is used for the light-shelf system, glaring may occur in certain circumstances even though such material increases efficiency, and there are also difficulties related to maintenance and management in the case of an external light-shelf system. Therefore, the purpose of this study is to suggest modifications in relation to the reflectivity of the light-shelf system and introduce a rolling type light-shelf system with built-in cleaning equipment. In addition, a performance evaluation technique was established to verify its effectiveness. Method: In this study, we reviewed previous studies related to the light-shelf system and its performance. Then a testbed was established to assess the performance of the rolling-type light-shelf system suggested in this study. Also, the performance of the rolling-type light-shelf system suggested in this study was compared and analyzed with that of existent light-shelf systems in order to better verify the performance, and the uniformity ratio of illumination and lighting energy consumption were calculated for this purpose. Result: The results of the performance evaluation are as follows. 1) The performance evaluation result of the light-shelf system on the day of the summer solstice shows that $30^{\circ}$ is appropriate for the angle of light-shelf system, and the depth of the incoming natural light also increases as the angle of the light shelf increases. 2) It is possible to improve the uniformity ratio of illumination by increasing the reflectivity of the light shelf, and the reason for this is the increase in the amount of incoming light entering indoors due to the increased reflectivity of the light shelf. 3) The rolling type light-shelf system suggested in this study enables energy saving in comparison with existent light-shelf systems, and when the external illuminance decreases to 60,000 lx and 40,000 lx during the summer solstice due to factors such as the weather, the suggested light-shelf system can save energy by 12.1% and 5.1% respectively. Thus the light-shelf system proposed in this study is deemed to be effective in reducing energy costs.