• Title/Summary/Keyword: External Fault

Search Result 148, Processing Time 0.024 seconds

Lineament and Fault-related Landforms of the Western Chungcheongnamdo (충남 서부지역의 선형구조와 단층지형)

  • Tae-Suk Kim;Cho-Hee Lee;Yeong Bae Seong
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.224-238
    • /
    • 2024
  • This study analyzed lineaments and fault-related landforms in Chungcheongnam-do, central Korean Peninsula, based on historical and instrumental records, given its susceptibility to future earthquakes. We extracted 151 lineaments associated with fault-related landforms. In regions with the Dangjin and Yesan faults, lineaments with strikes matching these faults were densely distributed. Conversely, in the Hongseong Fault area, the number of lineaments was smaller, and those with strikes similar to the fault were less discernible. This is likely due to the extensive distribution of alluvium and surface deformation from long-term weathering, erosion, and cultivation, which obscures geomorphic evidence of faults. At five key fault points, we identified fault-related landforms, such as fault saddles, knickpoints in Quaternary alluvium, and linear valleys, along the lineament, which may indicate an actual fault. However, the displacements of the Quaternary layer within the lineaments appear to be influenced more by external factors, such as artificial disturbances (e.g., cultivation) or stream erosion, than by direct fault movement. The differences between the fault-related landforms in this study area and those in the southeastern Korean Peninsula suggest a specific relationship between fault types and their associated landforms.

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

An I/O Bus-Based Dual Active Fault Tolerant Architecture fort Good System Performance

  • Kwak, Seung-Uk;Kim, Jeong-Il;Jeong, Keun-Won;Park, Kyong-Bae;Kang, Kyong-In;Kim, Hyen-Uk;Lee, Kwang-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.515-520
    • /
    • 1998
  • In this paper, we propose a new fault tolerant architecture for high availability systems, where for module internal operations both processor modules perform the same tasks at the same time independently of each other while for module external operations both processor modules act actively. That is, operations of synchronization between dual processor modules except clock synchronization are requested only when module external operations are executed. The architecture can not only improve system availability by reducing system reintegration time but also reduce performance degradation problem due to frequent synchronization between dual processor modules. The clock unit consists of a clock generator and a clock synchronization circuit. This supplies a stable clock signal under clock unit disorder of any processor module or rapid clock signal variation. And this architecture achieves system availability and data credibility by designing as symmetrical form.

  • PDF

A Percentage Current Differential Relaying Algorithm for Bus Protection Blocked by a CT Saturation Detection Algorithm (변류기 포화 곤단 알고리즘으로 억제된 모선보호용 비율 전류차동 계전방식)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • This paper describes a percentage current differential relaying algorithm for bus protection blocked by a CT saturation detection algorithm. The detection algorithm blocks the output of a current differential relay only if a differential current is caused by CT saturation in the case of an external fault. Moreover, if a current differential relay operates faster than the detection algorithm, the blocking signal is not ignited. On the other hand. if the detection algorithm operates faster than a current differential relay, the output of the relay is blocked. The results of the simulation show that the proposed algorithm can discriminate internal faults from external faults ever when a CT is saturated in both cases. This paper concludes by implementing the algorithm into the TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory The algorithm can not only increase the sensitivity of the current differential relay but Improve the stability of the relay for an external faults.

Failure prediction of a motor-driven gearbox in a pulverizer under external noise and disturbance

  • Park, Jungho;Jeon, Byungjoo;Park, Jongmin;Cui, Jinshi;Kim, Myungyon;Youn, Byeng D.
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.185-192
    • /
    • 2018
  • Participants in the Asia Pacific Conference of the Prognostics and Health Management Society 2017 (PHMAP 2017) Data Challenge were given measured vibration signals from motor-driven gearboxes used in pulverizers. Using this information, participants were requested to predict failure dates and the faulty components. The measured signals were affected by significant noise and disturbance, as the pulverizers in the provided data worked under actual operating conditions. This paper thus presents a fault prediction method for a motor-driven gearbox in a pulverizer system that can perform under external noise and disturbance conditions. First, two fault features, an RMS value in the higher frequency zones (HRMS) and an amplitude of a period for high-speed shaft in the quefrency domain ($QA_{HSS}$), were extracted based on frequency analysis using the higher and lower sampling rate data. The two features were then applied to each pulverizer based on results of frequency responses to impact loadings. Then, a regression analysis was used to predict the failure date using the two extracted features. A weighted regression analysis was used to compensate for the imbalance of the features in the given period. In addition, the faulty components in the motor-driven gearboxes were predicted based on the modulated frequency components. The score predicted by the proposed approach was ranked first in the PHMAP 2017 Data Challenge.

Application of Fault Current Limiter in 22.9kV KEPCO power distribution line (22.9kV 지중선로용 한류기 한전 실계통 시범적용)

  • Kim, Min Jee;Park, Kyungwon;Ahn, Kil-Young;Kim, Young-keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1034-1035
    • /
    • 2015
  • Watertight 25.8 kV/600 A/12.5 kA fault current limiters (FCLs) have successfully installed in five areas (Incheon, Seoul, Gyeong-gi, Daejeon, Suwon) on KEPCO power distribution line for the purpose of commercial demonstrations. The fault current limiting operation of this FCL, which includes functions of sensing, commutation, and reduction of fault currents, is perfectly completed within 1 cycle immediately after fault occurs. The performance of FCL was verified by short circuit test, impedance test, insulation test, temperature-rise test, and control test, etc at PT&T in LS industrial systems, which is the official certification institute in Korea. In 2013, and also the FCL field test was performed in order to test the protection coordination between conventional relays and FCL, on the 1.5 kA and 5.0 kA faults, which were made by connecting the Artificial Fault Generator (AFG) to the distribution line in test grid at KEPCO Power Testing Center. The next step of this project is to check the FCL conditions caused by real external environment, and acquire the various data from five regions installed with FCL. In this paper, we intend to explain the FCL specifications and performance characteristics, and check the expected effect by application of FCL to power distribution line based on the power system analysis of an application site.

  • PDF

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Disturbance State Identification of Power Transformer Based on Dempster's Rule of Combination (Dempster 결합룰에 의한 전력용 변압기 외란상태판정)

  • Kang, Sang-Hee;Lee, Seung-Jae;Kwon, Tae-Won;Kim, Sang-Tae;Kang, Yong-Cheol;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1479-1485
    • /
    • 1999
  • This paper proposes a fuzzy decision making method for power transformer protection to identify an internal fault from other transient states such as inrush, over-excitation and an external fault with current transformer (CT) saturation. In this paper, analyzing over 300 EMTP simulations of disturbances, four input variables are selected and fuzzified. At every sampling interval from half to one cycle after a disturbance, from the EMPT simulations, different fuzzy rule base is composed of twelve if-then fuzzy rules associated with their basic probability assignments for singleton- or compound-support hypotheses. Dempster's rule of combination is used to process the fuzzy rules and get the final decision. A series of test results clearly indicate that the method can identify not only an internal fault but also the other transients. The average of relay operation times is about 12(ms). The proposed method is implemented into a Digital Signal Processor (TMS320C31) and tested.

  • PDF

A Study of Early Warning System for Gas Facilities (가스 시설의 조기 경보 시스템에 대한 연구)

  • Lee Jeong Woo;Yoo Jin Hwan;Ko Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.38-43
    • /
    • 2005
  • There is monitored amount operation variables and controlled by operating conditions and loads at many facilities using gas also chemical plants. The process fault which can be indicated by operators, is occurred when the abnormal state was accumulated continuously owing to physical failure, external disturbance or human error. This is studied a Early Warning System which is to estimate process status by real-time monitoring operation variables and to early warning before it will be occurred process fault.

  • PDF