• Title/Summary/Keyword: Exterior joint

Search Result 164, Processing Time 0.022 seconds

Strength and Deformation of Exterior HSC column-Steel beam Joints (고강도 콘크리트 기둥-강재 보 외부 접합부의 강도 및 변형)

  • 조순호;선성규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.35-44
    • /
    • 2000
  • 전편의 실험적 연구에 이어서, 기 수행된 4개의 외부 접합부 시험체에 현존하는 여러 강도 예측식을 사용하여 콘크리트 기둥-강재 보 접합부의 내진 성능을 결정하는 패널 전단 및 지압 강도를 평가하였다. 또한, 접합부 패널지역의 변형특성을 묘사할 수 있는 일련의 스프링을 사용한 macro 형태의 해석모델이 논의되었으며, 이에 따라 Drain-2DX 및 IDARC 등의 상용프로그램을 사용하여 접합부의 패널전단 및 지압 파괴형태의 변형을 포함하는 단순해석이 수행되었다. 강도 예측결과에 의하면 본 연구에서 제시하는 수정된 내부 콘크리트 패널 전단 강도식을 포함하고 있는 ASCE 방법이 실험결과에 가장 근접한 것으로 나타났으며, 본 연구에서 검토된 패널지역 변형을 고려한 단순해석모델은 향후 전체 건물해석에 사용할수 있는 것으로 판단되었다.

  • PDF

Behavior of exterior reinforced concrete beam-column joints including a new reinforcement

  • Fisher, Matthew J.;Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.867-883
    • /
    • 2011
  • Six reinforced concrete beam-column joint specimens were constructed and tested under reverse cyclic loading to failure. The six specimens were divided into three groups, each group representing a different joint design. The main objectives of this study are to investigate the response of joints with three different design, reinforcement detailing and beam strengths, and to evaluate and compare the responses of beam-column joints reinforced with traditional steel rebar and a recently proposed steel reinforcement called prefabricated cage system (PCS). Each of the three test specimen designs included equivalent amount of steel reinforcement and had virtually identical details. The results of the research show that the PCS reinforced joints had a slightly higher strength and significantly larger deformation capacity than the equivalent rebar reinforced joints.

Theoretical Development and Design Aids for Expansion Joint Spacings

  • Lee, Hong-Jae;Lee, Cha-Don
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.101-111
    • /
    • 2000
  • It has been a well known fact that buildings having inappropriate expansion joints in their spacings may be subject to exterior damages due to extensive cracks on the outer walls under service loads and structural damages due to excessive moment induced by temperature changes at ultimate load conditions. Unfortunately, consistent code provisions are unavailable regarding spacings of expansion joints from different foreign structural codes. And a more serious problem is that no quantitative measurements on spacings is given in our codes for building structures. In order to establish a rational guideline on the spacing of expansion joints, theoretical approaches are taken in this study. The developed theoretical formula is, then, converted to a design chart for structural designers' convenience in its use. The chart considers both service and ultimate load stages.

  • PDF

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Cyclic-Leading Tests of RC Exterior Beam-Column Joints with Non-Seismic Detailing (비내진 상세를 가진 RC 외부접합부의 반복 횡하중 실험)

  • Cha, Byung-Gi;Ko, Dong-Woo;Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. To do this, an exterior beam-column subassemblage was selected from a ten story RC building and six 1/3-scale specimens were manufactured with three variables; (1) with and without slab, (2) upward and downward direction of anchorage for the bottom bar in beams, and (3) with and without hoop bars in the joint region. The test results have shown that (1) the existence of slab increased the strength in positive and negative moment, 25% and 52%, respectively; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation in comparison with the case of seismic details; and (3) the existence of hoop bars in the joint region shows significant role in preventing the pull-out.t.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

Experimental study on seismic behavior of exterior composite beam-to-column joints with large size stiffened angles

  • Wang, Peng;Wang, Zhan;Pan, Jianrong;Li, Bin;Wang, Bo
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.15-26
    • /
    • 2020
  • The top-and-seat angles with double web angles are commonly used in the design of beam-to-column joints in Asian and North American countries. The seismic behavior analysis of these joints with large cross-section size of beam and column (often connected by four or more bolts) is a challenge due to the effects from the relatively larger size of stiffened angles and the composite action from the adjacent concrete slab. This paper presents an experimental investigation on the seismic performance of exterior composite beam-to-column joints with stiffened angles under cyclic loading. Four full-scale composite joints with different configuration (only one specimen contain top angle in concrete slab) were designed and tested. The joint specimens were designed by considering the effects of top angles, longitudinal reinforcement bars and arrangement of bolts. The behavior of the joints was carefully investigated, in terms of the failure modes, slippage, backbone curves, strength degradation, and energy dissipation abilities. It was found that the slippage between top-and-seat angles and beam flange, web angle and beam web led to a notable pinching effect, in addition, the ability of the energy dissipation was significantly reduced. The effect of anchored beams on the behavior of the joints was limited due to premature failure in concrete, the concrete slab that closes to the column flange and upper flange of beam plays an significant role when the joint subjected to the sagging moment. It is demonstrated that the ductility of the joints was significantly improved by the staggered bolts and welded longitudinal reinforcement bars.

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.

Changes in Service life in RC Containing OPC and GGBFS Considering Effects of Loadings and Cold Joint (OPC 및 GGBFS를 혼입한 콘크리트의 하중조건과 콜드조인트에 따른 내구수명 변화)

  • Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.466-473
    • /
    • 2017
  • RC (Reinforced Concrete) member has varying service life due to varying diffusion characteristics with loading conditions even if it is exposed to constant exterior conditions. In the paper, quantitative parameters are obtained through adopting the previous results for effects of compressive, tensile, and cold joint on chloride diffusion in OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete. Service life is evaluated in RC simple beam with 10.0m of span through increasing loading from self weight (2.5kN/m) to the loading to cracking moment (5.5kN/m). In OPC concrete without cold joint, service life changes to 89.4% for tensile region and 101% for compressive region with loadings while GGBFS concrete has 80.0% and 106%, respectively. For cold joint area, GGBFS concrete shows much reduced service life to 82~80% in compressive region and 69~61% in tensile region, which is caused by the lower diffusion in normal condition but relatively higher increasing cold joint effect than OPC concrete.