• Title/Summary/Keyword: Exterior joint

Search Result 164, Processing Time 0.032 seconds

Effects of joint aspect ratio on required transverse reinforcement of exterior joints subjected to cyclic loading

  • Chun, Sung Chul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.705-718
    • /
    • 2014
  • This paper presents an analytical model for determining the transverse reinforcement required for reinforced concrete exterior beam-column joints subjected to reversed cyclic loading. Although the joint aspect ratio can affect joint shear strength, current design codes do not consider its effects in calculating joint shear strength and the necessary amount of transverse reinforcement. This study re-evaluated previous exterior beam-column joint tests collected from 11 references and showed that the joint shear strength decreases as the joint aspect ratio increases. An analytical model was developed, to quantify the transverse reinforcement required to secure safe load flows in exterior beam-column joints. Comparisons with a database of exterior beam-column joint tests from published literature validated the model. The required sectional ratios of horizontal transverse reinforcement calculated by the proposed model were compared with those specified in ACI 352R-02. More transverse reinforcement is required as the joint aspect ratio increases, or as the ratio of vertical reinforcement decreases; however, ACI 352R-02 specifies a constant transverse reinforcement, regardless of the joint aspect ratio. This reevaluation of test data and the results of the analytical model demonstrate a need for new criteria that take the effects of joint aspect ratio into account in exterior joint design.

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF

Hysteresis Characteristics of RC Exterior Beam-Column Joint Retrofitted with Haunch (헌치를 이용하여 보강된 RC 보-기둥 외부접합부의 반복이력 특성)

  • Lee, Young Wook;Park, Hyeong Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.115-123
    • /
    • 2017
  • To investigate the cyclic characteristics of the retrofitted exterior joints of RC frame with haunch, 70% scaled 6 beam-column exterior joint subassemblies were designed according to design guideline according to 1988 and tested with cyclic loading up to 3.5% story drift ratio. During the experiments axial forces are applied to columns to simulate gravity load. Experimental results shows that the strength of retrofitted specimens was increased steadily until 2.5% story drift ratio and their strengths increased more than 1.7 times of the non-retrofitted in case that main bar was bent away from exterior joint. The joint strength and effective stiffness of the retrofitted specimen was increased and results in more deformation capacity compared to the non-retrofitted.

A Performance Test on Exterior T-type Joint for RCS Composite System (철근콘크리트 기둥 철골 보의 합성구조 외부형 접합부 구조성능에 관한 연구)

  • 양승렬;이상호;김병국;정하선;김종락;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.977-982
    • /
    • 2000
  • As a newly structural system, RCS composite system has been researched last two decades. However mechanism of exterior T-type joint for RCS composite system is not well known. This research is focus on the exterior T-type joint for RCS composite system. Specimens are designed by the ASCE guideline, tested and compared with the inner RCS joint. Test variables include face bearing plate(FBP), extended face bearing plate(E-FBP) and U-bar. The tests indicate that the strength of exterior T-type joint is higher than that of the guideline by ASCE. The U-bar has a significant effect on the joint strength and absorbing the strain energy.

Investigation of shear strength models for exterior RC beam-column joint

  • Parate, Kanak;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.475-514
    • /
    • 2016
  • Various models have been proposed by several researchers for predicting the exterior RC beam-column joint shear strength. Most of these models were calibrated and verified with some limited experimental database. From the models it has been identified that the joint shear strength majorly depends on ten governing parameters. In the present paper, detailed investigation of twelve analytical models for predicting shear strength of exterior beam-column joint has been carried out. The study shows the effect of each governing parameter on joint shear strength predicted by various models. It has been observed that the consensus on effect of few of the governing parameters amongst the considered analytical models has not been attained. Moreover, the predicted joint strength by different models varies significantly. Further, the prediction of joint shear strength by these analytical models has also been compared with a set of 200 experimental results from the literature. It has been observed that none of the twelve models are capable of predicting joint shear strength with sufficient accuracy for the complete range of experimental results. The research community has to reconsider the effect of each parameters based on larger set of test results and new improved analytical models should be proposed.

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

An Experimental Study on Shear on Shear Capacity of Reinforced Concrete Exterior Beam-Column Joint with High Strength Concrete (고강도 재료를 사용한 철근 콘크리트 보.기둥 외부접합부의 전단내력에 관한 실험적 연구)

  • 박기철;황홍순;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.59-66
    • /
    • 1992
  • The objective of this investigation was to dvaluater the factors influencing the vasic shear strength of Exterior Beam-Column Joint. Reversec cyclic loading were carride out for 10 reinforced concrete Exterior Beam-Column subassemblages. All the specimens finally failed in joint shear.

  • PDF

Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail (비내진 상세를 가진 저층 R.C조의 외부접합부 거동)

  • 김영문;기찬호;장준호;이세웅;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Effects of the Number of Hooked Bars on Anchorage Conditions at Exterior Joints (외측 보-기둥 접합부의 정착 상태에 관한 훅크철근의 영향)

  • Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of the number of hooked bars of joint area were investigated. Under the pull-out action of hooked bars, the damage and cracking of joint area tends to be more extensive as the number of hooks pulling out from a joint increases. The pull-out strength and post-peak ductility of hooked bar are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at exterior joints.

  • PDF

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.