• Title/Summary/Keyword: Exterior Insulation

Search Result 116, Processing Time 0.02 seconds

The Characteristics of Groundwater and a Field Test for Thermal Insulation of Landfarming of Petroleum Contaminated Soil in Winter Season (유류오염지역의 지하수 수질특성 및 동절기 토양경작법의 온도보전을 위한 현장사례 연구)

  • Cho, Chang-Hwan;Kim, Soon-Heum;An, Jong-Ik;Lee, Yoon-Oh;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of groundwater in the petroleum contaminated site and to evaluate the applicability of house-type landfarm facilities heated with briquette stoves in winter season. The six monitoring wells were installed at the site where pH, dissolved oxygen, and temperature were all measured. Also groundwater contaminants, benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon, were analyzed twice. House-type two landfarm facilities ($12m{\times}40m{\times}4.8m$) each installed with four briquette stoves were constructed. During four rounds treatment process, VOCs, moisture, temperature were monitored and soil contaminants were analyzed. The pH was 6.37 and considered subacid and DO was measured to be 3.12 mg/L. The temperature of groundwater was measured to be $9.48^{\circ}C$. The groundwater contaminants were detected only in the monitoring wells within the contaminated area or close to it showing that the groundwater contaminated area was similar to the soil contaminated area. During the landfarm process, 73.3% of VOCs concentration in interior gas was decreased and moisture was lowered from 17.7% to 13.4%. In the morning, at 8:00 am, the temperature was decreased showing soil ($5.5^{\circ}C$) > interior ($4.8^{\circ}C$) > exterior ($3.5^{\circ}C$). In the afternoon, at 2:00 pm, the temperature was soil ($8.6^{\circ}C$) < interior ($9.9^{\circ}C$) < exterior ($11.5^{\circ}C$) with solar radiation. The temperature difference between interior and exterior was $0.7^{\circ}C$ in the morning, but it was $1.6^{\circ}C$ in the afternoon. A total of 130 days were taken for four round landfarm processes. Each process was completed within 33 days showing 80% of cleanup efficiency ($1^{st}$ order dissipation rate(k) = 0.1771).

Analysis of Temperature and Total Heat of Heated Glass through Experimental Measurement and Three-Dimensional Steady-State Heat Transfer Analysis (실측실험과 3차원 정상상태 열전달 해석을 통한 발열유리의 온도 및 전열량 분석)

  • Lee, Do-Hyung;Yoon, Jong-Ho;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.111-116
    • /
    • 2015
  • Heat loss from windows and condensation occuring on its surface due to its lower insulation value causes much discomfort to occupants. In this study, Heated glass was used to make a basic study on prevention of condensation on glass surface for its heating functionality through experimental measurement and simulation analysis of total heat flux on the interior and exterior surface of glass. Error between experimental results and three dimensional steady-state heat transfer analysis were caused firstly, beacuse in the experimental chambers, cold chamber and steady temperature and humidity chamber, air temperature setting was not constant but rather ON/OFF control, and secondly, due to error rate in heat flux meter due to heat flux direction even in stable conditions.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

A Study on Evaluation of the Building Energy Rating depending on the Thermal Performance of Balcony Window with Low-E glazing (로이유리 발코니 창호의 단열성능에 따른 공동주택 건축물 에너지효율등급 평가 연구)

  • Lee, Na-Eun;Ahn, Byung-Lip;Jang, Cheol-Yong;Leigh, Seung-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • As the exterior of building has been considered one of th important parts, the use of glass that is suitable to express various appearances gets raised. However, windows have 6~7times lower insulating performance than insulated walls. Lately, highly efficient windows are required as the needs for reduction of energy consumption come to the force. Therefore, Nowadays more people use cooling systems in summer, more the use of Low-E glazing is increasing. Because it is good to block Solar Radiant Energy which can cause much of heat loss while cooling system is working. This study measures U-value of the double Low-E glazing window and commonly used single Low-E glazing window. And then the effect of each window on the efficiency rating has been analyzed applying to the certification system of the building energy efficiency rating which has implemented.

An Experimental Study on the Strength Characteristic Improvement of the Autoclaved Lightweight Concrete(ALC) containing Quicklime and Silica Fume (생석회와 실리카퓸을 활용한 경량기포콘크리트(ALC)의 강도특성 개선을 위한 실험적 연구)

  • Kim, Young-Ho;Song, Hun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • These materials in architecturally glass or metal have weaknesses such as inadequate insulating quality, combustibility and toxic gases in fires substance. However, Autoclaved Lightweight Concrete(ALC) has excellent thermal insulation properties and seem to possess the superb insulating quality as substitute of existing exterior materials. This research is to compare experimentally to the kind of the strength properties of ALC materials which mixed with blast furnace slag pounder and silica fume. For the purpose of increasing the strength, the plastic states of ALC evaluate the physical characteristics as microstructure and strength according to various specific gravity. According to the quicklime quantity the compressive strength is proportionate depend on the absolute dried specific gravity. When not putting in 10% quicklime, the compressive strength appeared most lowly with 14.0MPa. When putting in the quicklime, the strength appeared higher with 15.1MPa. And strength of specimen containing 2.25% silica fume is 15.6MPa increased 10.3% than reference specimen 14.0MPa.

NUMERICAL STUDY ON THE EFFECT OF EXTERNAL AIR VELOCITY AND DIRECTION ON FLAME SPREAD IN HIGH RISE BUILDING WITH THE ALUMINUM COMPOSITE EXTERNAL MATERIALS (알루미늄 복합 외장재를 사용한 고층 건축물의 외기 풍속, 풍향 변화가 화염전파에 미치는 영향에 대한 수치해석 연구)

  • Kim, H.J;Bae, S.Y.;Choi, Y.K.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.225-229
    • /
    • 2011
  • The aluminum composite panel are widely used for the external materials of high rise building because of well insulation of heat and sound and improved Constructability. However, the polyethylene in main material of the aluminum composite panel shows weakness in thermal and fire resistances. For this reason, flame is spread more quickly when the fire break out. Therefore, the potentiality of fire spread to the exterior wall is high due to difficulty of early extinguishment and effect of external air. In this study, numerical investigation was performed by using FDS program for flame spread characteristics with various external air velocity and direction in ten-story building with the aluminum composite external materials. As a result, the flame spread velocity is 0.134m/s and it takes 224 seconds for flames to spread to the 10th floor without external air velocity. however, the flame spread velocity decreases 40% and it takes 348 seconds for flames to spread to the 10th floor when external air velocity is 2.5 m/s. and air direction is little effect compared to air velocity.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

Suggestion of the Characteristics of Element Technology and the Standard Model through the Comparison of Domestic Zero-energy Houses (국내 에너지제로하우스 비교를 통한 요소기술 특성 및 표준 모델 제시에 관한 연구)

  • Lee, Chung-Kook;Lee, Jeong-Cheol;Kim, Sang-Su;Suh, Seung-Jik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Five zero energy house models developed in Korea for the purpose of the energy performance were compared and analyzed in the study. The standard passive house model applying common technology and efficient energy performance elements was proposed. Standard passive house 5 models have been developed commonly aiming at 100% energy saving, applying high-performance and high-efficiency exterior thermal insulation, using 3 low-e coated window system, and targeting average 0.65 ACH to enhance privacy. Energy recovery ventilators and dry and cold radiant heating floor has been partially applied. Eco-design techniques such as the awning device, heat insulating door, using natural light have been used. Solar and geothermal systems as the application of renewable energy technologies have been commonly applied. And fuel cells were applied to a partial model. The standard model based on common technical elements and average performance of each element and obtained from five model analysis has been proposed in the study.

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

Calculation of Fire-resisting Time and Extraction of Simple Transplants in the Event of a Building Fire (건축물 화재시 필요내화 시간 산정 및 간이식 도출)

  • Kim, Yun-Seong;Han, Ji-Woo;kim, Hye-Won;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.59-60
    • /
    • 2020
  • Large fires continue to spread throughout the building, including the fire in Uijeongbu in 2015, the fire in Jecheon in 2017, and the fire in Miryang in 2018. According to the above fire case investigation, major problems were the fire resistance performance of compartment members such as fire doors, the fire spread due to damage to exterior wall openings, and smoke spread through vertical openings. However, in South Korea, only specification design is implemented for buildings that are not subject to performance design. In addition, the analysis of the fire resistance performance standards of building members in the specification design showed that fire doors were not specified in detail for 60 minutes of insulation performance and 60 minutes of fire resistance performance of E/V doors, limiting the prevention of fire spread. Therefore, the purpose of this research is to prepare measures to prevent the spread of fire by presenting simple transplants for calculating the required fire time according to the architectural design conditions for the performance design of the components of the fire room according to the purpose of use of the front of the building.

  • PDF