• Title/Summary/Keyword: Extended-range electric vehicles

Search Result 8, Processing Time 0.019 seconds

The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance (SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석)

  • Lee, Daeheung;Jeong, Jongryeol;Park, Yeongil;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.

Range Extension of Light-Duty Electric Vehicle Improving Efficiency and Power Density of IPMSM Considering Driving Cycle (주행 사이클을 고려한 IPMSM의 효율 및 출력 밀도 개선으로 경량 전기 자동차의 주행거리 연장)

  • Kim, Dong-Min;Jung, Young-Hoon;Lim, Myung-Seop;Sim, Jae-Han;Hon, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2197-2210
    • /
    • 2016
  • Recently, the trend of zero emissions has increased in automotive engineering because of environmental problems and regulations. Therefore, the development of battery electric vehicles (EVs), hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs), and fuel cell electric vehicles (FCEVs) has been mainstreamed. In particular, for light-duty electric vehicles, improvement in electric motor performance is directly linked to driving range and driving performance. In this paper, using an improved design for the interior permanent magnet synchronous motor (IPMSM), the EV driving range for the light-duty EV was extended. In the electromagnetic design process, a 2D finite element method (FEM) was used. Furthermore, to consider mechanical stress, ANSYS Workbench was adopted. To conduct a vehicle simulation, the vehicle was modeled to include an electric motor model, energy storage model, and regenerative braking. From these results, using the advanced vehicle simulator (ADVISOR) based on MATLAB Simulink, a vehicle simulation was performed, and the effects of the improved design were described.

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.

Communication Method for Torque Control of Commercial Diesel Engine in Range-Extended Electric Trash Truck (주행거리 연장형 청소용 전기자동차에 장착된 상용 디젤엔진의 토크제어를 위한 통신 방안)

  • Park, Young-Kug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.1-8
    • /
    • 2018
  • This paper describes new communication methods for transmitting torque commands between the vehicle controller that determines the amount of power generation in a range-extended electric vehicle and the engine controller that performs it. Generally, vehicles use CAN communication, but in this case, the hardware and software of the existing engine controller must be modified. For this reason, it is not easy to apply CAN communication to small and medium sized automotive reorganize companies. Therefore, this research presents a pin-pin communication method for applying the existing mass produced engine controller to range-extended electric vehicles. The pin-pin communication method converts the driver's demand torque control map inside an mass produced engine controller into a virtual accelerator opening position according to the target speed and target torque of the engine, and converts this to a voltage signal for the existing mass produced engine controller to recognize it. The virtual accelerator opening positions are mounted in the form of a control map in the vehicle controller through the reverse conversion process in an offline environment and are determined by the engine generating power requirements and engine optimal operating point algorithm. These algorithms and signal conversion circuits for engine torque transmission have been mounted on the vehicle controller to conduct the virtual accelerator opening position conversion process according to the engine target torque and to establish the virtual accelerator voltage signal using the signal converter.

Analysis of Agricultural Working Load Experiments for Reduction Gear Ratio Design of an Electric Tractor Powertrain (전기구동 파워트레인의 감속기어비 설계를 위한 농용 트랙터의 작업 부하 분석)

  • Kim, Jung-Yun;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.138-144
    • /
    • 2012
  • Recent environmental issues such as exhaust gas and greenhouse effect make the agricultural machinery market takes into account the hybrid and electric propulsion technology used in automotive engineering. Generally the agricultural machinery, particularly an agricultural tractor, needs large load capacity and long continuous operating time comparing with conventional vehicles. In case of a pure electric tractor, it is necessary for considering large capacity batteries and long charging time. Therefore we take an AER extended PHEV (All Electric Range extended Plug-in Hybrid Electric Vehicle) power transmission system in developing an electric tractor in this study. First we propose a PHEV powertrain structure in order to substitute the conventional diesel engine equipped tractor. And we performed the road tests using a conventional mechanical tractor with various load conditions, which were classified and statistically treated real agricultural works. The test results were analysed with respect to the power characteristics of the power source. Finally using the test result, we designed two-stepped reduction gear ratios in the proposed an electric tractor powertrain for carrying out typical agricultural works.

A study on characteristics analysis of 5kW Small-scaled Inductive Power Transfer Module for Railway Vehicles (철도차량용 5kW급 유도급전 축소 모듈의 특성 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Jung, Ho-Sung;Kim, Ki-Byung;Kim, Chul-Sub
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1675-1680
    • /
    • 2011
  • Inductive power transfer module(IPTM) is a contact-less power supply device and its application range has been extended to the large capacity devices such as electric vehicles, industrial mover and railway system as well as small capacity devices such as electric toothbrush charger, celluar phone charger, and so on. For railway application, the IPTM will transfer energy while train stops at a station for around 30[sec]. Therefore, equivalent circuit parameters and coupling coefficient of IPTM are an important design factor for the high energy transfer efficiency. This paper investigates the properties of equivalent circuit parameters and coupling coefficient of U-U type IPTM and U-I type IPTM using an analytical method and experimental method. Considering the coupling coefficient of the U-U type is larger than U-I type's, the U-U type is suitable for an application which need maximum power transfer and high efficiency.

  • PDF

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu;Xin, Yuelong;Cheng, Fuquan;Lai, Man On;Zhou, Henghui;Lu, Li
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.72-82
    • /
    • 2014
  • Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

Novel Estimation Technique for the State-of-Charge of the Lead-Acid Battery by using EKF Considering Diffusion and Hysteresis Phenomenon (확산 및 히스테리시스 현상을 고려한 확장칼만필터를 이용한 새로운 납축전지의 충전상태 추정방법)

  • Duong, Van-Huan;Tran, Ngoc-Tham;Park, Yong-Jin;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2014
  • State-of-charge (SOC) is one of the significant indicators to estimate the driving range of the electric vehicle and to control the alternator of the conventional engine vehicles as well. Therefore its precise estimation is crucial not only for utilizing the energy effectively but also preventing critical situations happening to the power train and lengthening the lifetime of the battery. However, lead-acid battery is time-variant, highly nonlinear, and the hysteresis phenomenon causes large errors in estimation SOC of the battery especially under the frequent discharge/charge. This paper proposes a novel estimation technique for the SOC of the Lead-Acid battery by using a well-known Extended Kalman Filter (EKF) and an electrical equivalent circuit model of the Lead-Acid battery considering diffusion and hysteresis characteristics. The diffusion is considered by the reconstruction of the open circuit voltage decay depending on the rest time and the hysteresis effect is modeled by calculating the normalized integration of the charge throughput during the partial cycle. The validity of the proposed algorithm is verified through the experiments.