• Title/Summary/Keyword: Extended electromotive force

Search Result 12, Processing Time 0.02 seconds

Simple Sensorless Control of Interior Permanent Magnet Synchronous Motor Using PLL Based on Extended EMF

  • Han, Dong Yeob;Cho, Yongsoo;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.711-717
    • /
    • 2017
  • This paper proposes an improved sensorless control to estimate the rotor position of an interior permanent magnet synchronous motor. A phase-locked loop (PLL) is used to obtain the phase angle of the grid. The rotor position can be estimated using a PLL based on extended electromotive force (EEMF) because the EEMF contains information about the rotor position. The proposed method can reduce the burden of calculation. Therefore, the control period is decreased. The simulation and experimental results confirm the effectiveness and performance of the proposed method.

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Sensorless Control Strategy of IPMSM Based on a Parallel Reduced-Order EKF (병렬형 저감 차수 칼만 필터를 이용한 IPMSM의 센서리스 제어)

  • Yim, Dong-Hoon;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.448-449
    • /
    • 2010
  • This paper proposes a sensorless control strategy for the Interior Permanent Magnet Synchronous Motor (IPMSM) by using the parallel reduced-order Extended Kalman Filter. The sensorless control strategy is composed with two EKFs alternately computed every sampling period with a new model. The new model is based on the extended electromotive force (EEMF) which has a simple structure, making position estimation possible without approximation. The proposed strategy can save computation time and estimate rotor speed and position. To verify the merit of the proposed strategy, simulation and experimental results validate the theoretical analysis and show the feasibility of the proposed control strategy.

  • PDF

A Simplified Analysis Approach on the Rotor Position Detection Error in Sensorless Interior Permanent Magnet Brushless DC Motor Drives (센서리스 매입형 영구자석 브러시리스 직류전동기 구동장치에서 단순화된 회전자 위치검출 오차 분석 방법)

  • Lee, Kwang-Woon;Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.449-452
    • /
    • 2016
  • This paper presents a simplified analysis on the rotor position detection error in sensorless interior permanent magnet brushless DC motor (BLDCM) drives, wherein terminal voltage sensing based on the back-electromotive force (back-EMF) zero-crossing point detecting circuitry is employed. The effect of a rotor saliency on the back-EMF's zero-crossing point detection is analyzed using the extended EMF-based voltage equation of the interior permanent BLDCM in a stationary reference frame, and thus the overall analysis is considerably simplified compared to the conventional one. Simulation results are provided to verify the effectiveness of the proposed method.

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

  • Lee, Kwang-Woon;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.604-614
    • /
    • 2012
  • This paper presents a comparative study of position sensorless control schemes based on back-electromotive force (back-EMF) estimation in permanent magnet synchronous motors (PMSM). The characteristics of the estimated back-EMF signals are analyzed using various mathematical models of a PMSM. The transfer functions of the estimators, based on the extended EMF model in the rotor reference frame, are derived to show their similarity. They are then used for the analysis of the effects of both the motor parameter variations and the voltage errors due to inverter nonlinearity on the accuracy of the back-EMF estimation. The differences between a phase-locked-loop (PLL) type estimator and a Luenberger observer type estimator, generally used for extracting rotor speed and position information from estimated back-EMF signals, are also examined. An experimental study with a 250-W interior-permanent-magnet machine has been performed to validate the analyses.

Flux Position Estimation Method of IPMSM by Controlling Current Derivative at Zero Voltage Vector

  • Hosogaya, Yuji;Kubota, Hisao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • Various methods have been proposed to identify the flux position in an interior permanent magnet synchronous motor (IPMSM) without the use of mechanical sensors. To achieve this, a method that uses both the back electromotive force (EMF) and the saliency to identify the flux position in the IPMSM without the injection of high-frequency components at low speeds has been reported. This method was then extended in order to drive the motor with no load to a light load. We propose a combination of these methods with different proportional-integral (PI) controllers for controlling $di_{dest}$/dt and $di_{qest}$/dt. We also introduce compensation values $F_L$ and $F_H$ to reduce the position error when the estimation rule is being selected.

Activity Coefficients of Uni-univalent Electrolytes in Anhydrous Ethylenediamine (에틸렌디아민 非水溶液中에서의 1:1 염의 活性係數)

  • Joon Yong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.229-234
    • /
    • 1973
  • The dependence of ionic activity and electrode potential upon electrolyte concentration in ethylenediamine includes the effects of ion-pair formation involving all possible combinations of cations and anions represent in the solution and includes the ion-atmosphere effects of dissociated ions. For calculating activity coefficients, Debye-Huckel limiting law, extended Debye-Huckel,equation, and Marshall Grunwald equation were used in comparison of experimental and calculated plots of the electromotive force of the cell versus the logarithum of concentration. The fit of the experimental points to the theoretical curves was improved in case of the Marshall-Grunwald equation.

  • PDF

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.

Power-saving Module using Ferroelectric Ceramics for Electronic Ballast (강유전체 세라믹스를 이용한 전자식 안정기용 절전모듈)

  • Shin, Hyun-Yong
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.741-748
    • /
    • 2005
  • Power saving module which is consisted of ferroelectric ceramic capacitor and time delay switching circuit was installed into electronic ballast in order to enhance energy efficacy and extend life time of fluorescent lamp. The impedance matching of negative resistance characteristics of F/L was optimized with the characteristics of ferroelectric ceramics capacitor to increase the light efficiency of the electronic ballast. The high efficiency of the electronic ballast was achieved by minimizing wasted power at the filament of F/L during the lighting by using the switching function of time delay circuit from preheating mode to non-preheating mode. The life time of F/L was also extended by eliminating the reverse electromotive force using time delay circuits to minimize the impacts to the filament of F/L from unwanted high voltage peaks during light-up period. As the results, the electronic ballast with the first grade energy efficiency was developed using ferroelectric ceramics and time delay module.

  • PDF