• Title/Summary/Keyword: Extended W-Method

Search Result 89, Processing Time 0.031 seconds

A Model-based Test Approach and Case Study for Weapon Control System (모델기반 테스트 기법 및 무장통제장치 적용 사례)

  • Bae, Jung Ho;Jang, Bucheol;Koo, Bongjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.688-699
    • /
    • 2017
  • Model-based test, a well-known method of the black box tests, is consisted of the following four steps : model construction using requirement, test case generation from the model, execution of a SUT (software under test) and detection failures. Among models constructed in the first step, state-based models such as UML standard State Machine are commonly used to design event-based embedded systems (e.g., weapon control systems). To generate test cases from state-based models in the next step, coverage-based techniques such as state coverage and transition coverage are used. Round-trip path coverage technique using W-Method, one of coverage-based techniques, is known as more effective method than others. However it has a limitation of low failure observability because the W-Method technique terminates a testing process when arrivals meet states already visited and it is hard to decide the current state is completely same or not with the previous in the case like the GUI environment. In other words, there can exist unrevealed faults. Therefore, this study suggests a Extended W-Method. The Extended W-Method extends the round-trip path to a final state to improve failure observability. In this paper, we compare effectiveness and efficiency with requirement-item-based technique, W-Method and our Extended W-Method. The result shows that our technique can detect five and two more faults respectively and has the performance of 28 % and 42 % higher failure detection probability than the requirement-item-based and W-Method techniques, respectively.

Robust market-based control method for nonlinear structure

  • Song, Jian-Zhu;Li, Hong-Nan;Li, Gang
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1253-1272
    • /
    • 2016
  • For a nonlinear control system, there are many uncertainties, such as the structural model, controlled parameters and external loads. Although the significant progress has been achieved on the robust control of nonlinear systems through some researches on this issue, there are still some limitations, for instance, the complicated solving process, weak conservatism of system, involuted structures and high order of controllers. In this study, the computational structural mechanics and optimal control theory are adopted to address above problems. The induced norm is the eigenvalue problem in structural mechanics, i.e., the elastic stable Euler critical force or eigenfrequency of structural system. The segment mixed energy is introduced with a precise integration and an extended Wittrick-Williams (W-W) induced norm calculation method. This is then incorporated in the market-based control (MBC) theory and combined with the force analogy method (FAM) to solve the MBC robust strategy (R-MBC) of nonlinear systems. Finally, a single-degree-of-freedom (SDOF) system and a 9-stories steel frame structure are analyzed. The results are compared with those calculated by the $H{\infty}$-robust (R-$H{\infty}$) algorithm, and show the induced norm leads to the infinite control output as soon as it reaches the critical value. The R-MBC strategy has a better control effect than the R-$H{\infty}$ algorithm and has the advantage of strong strain capacity and short online computation time. Thus, it can be applied to large complex structures.

Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial (확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계)

  • Lee, Young-Sup;Ku, Hyun-Chul;Kim, Jeong-Hwi;Ryoo, Kyoo-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1254-1264
    • /
    • 2008
  • This paper suggests an extended memory polynomial model that improves accuracy in modeling memory effects of RF power amplifiers(PAs), and verifies effectiveness of the suggested method. The extended memory polynomial model includes cross-terms that are products of input terms that have different delay values to improve the limited accuracy of basic memory polynomial model that includes the diagonal terms of Volterra kernels. The complexity of the memoryless model, memory polynomial model, and the suggested model are compared. The extended memory polynomial model is represented with a matrix equation, and the Volterra kernels are extracted using least square method. In addition, the structure of digital predistorter and digital signal processing(DSP) algorithm based on the suggested model and indirect learning method are proposed to implement a digital predistortion linearization. To verify the suggested model, the predicted output of the model is compared with the measured output for a 10W GaN HEMT RF PA and 30 W LDMOS RF PA using 2.3 GHz WiBro input signal, and adjacent-channel power ratio(ACPR) performance with the proposed digital predistortion is measured. The proposed model increases model accuracy for the PAs, and improves the linearization performance by reducing ACPR.

Extended Adaptively Sampled Distance Fields Method for Rendering Implicit Surfaces with Sharp Features (음함수 곡면의 날카로운 형상 가시화를 위한 확장 Adaptively Sampled Distance Fields 방법)

  • Cha J.H.;Lee K.Y.;Kim T.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.27-39
    • /
    • 2005
  • Implicit surfaces are geometric shapes which are defined by implicit functions and exist in three-dimensional space. Recently, implicit surfaces have received much attention in solid modeling applications because they are easy to represent the location of points and to use boolean operations. However, it is difficult to chart points on implicit surfaces for rendering. As efficient rendering method of implicit surfaces, the original Adaptively Sampled Distance Fields (ADFs) $method^{[1]}$ is to use sampled distance fields which subdivide the three dimensional space of implicit surfaces into many cells with high sampling rates in regions where the distance field contains fine detail and low sampling rates where the field varies smoothly. In this paper, in order to maintain the sharp features efficiently with small number of cells, an extended ADFs method is proposed, applying the Dual/Primal mesh optimization $method^{[2]}$ to the original ADFs method. The Dual/Primal mesh optimization method maintains sharp features, moving the vertices to tangent plane of implicit surfaces and reconstructing the vertices by applying a curvature-weighted factor. The proposed extended ADFs method is applied to several examples of implicit surfaces to evaluate the efficiency of the rendering performance.

A Study on Modeling Heterogeneous Embedded S/W Components based on Model Driven Architecture with Extended xUML (확장된 xUML을 사용한 MDA 기반 이종 임베디드 소프트웨어 컴포넌트 모델링에 관한 연구)

  • Kim, Woo-Yeol;Kim, Young-Chul
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.83-88
    • /
    • 2007
  • In this paper, we introduce MDA based Development Method for Embedded Software Component. This method applies MDA approach to solve problems about reusability of the heterogeneous embedded software system. With our proposed method, we produce 'Target Independent Meta Model'(TIM) which is transformed into 'Target Specific Model'(TSM) and generate 'Target Dependent Code' (TDC) via TSM. We would like to reuse a meta-model to develop heterogeneous embedded software systems. To achieve this mechanism, we extend xUML to solve unrepresented elements (such as real things about concurrency, and real time, etc) on dynamic modeling of the particular system. We introduce 'MDA based Embedded S/W Modeling Tool' with extended XUML. With this tool, we would like to do more easily modeling embedded or concurrent/real time s/w systems. It contains two examples of heterogeneous imbedded systems which illustrate the proposed approach.

Input Voltage Range Extension Method for Half-Bridge LLC Converters by Using Magamp Auxiliary Post-Regulator

  • Jin, Xiaoguang;Lin, Huipin;Xu, Jun;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.34-43
    • /
    • 2019
  • An improved half-bridge LLC converter with a magamp auxiliary post-regulator is proposed in this paper. The function of the magamp is bypassed when the converter works within the low input-voltage range. Meanwhile, it operates as an auxiliary post-regulator when the input voltage is high. By changing the blocking time of the magamp, the dc gain of the converter can be extended. Hence, the input voltage range of the converter is extended. The realization of proposed topology does not require a complicated circuit. The controller of the magamp can be easily implemented using only passive components, transistors and an OP amp. The generalized operational principle is analyzed and the design criterion for the magamp is presented. Finally, a 25V output, 400W experimental prototype was built and tested for a 160-300V input-voltage range to verify the feasibility of the proposed method.

PARTIAL DIFFERENTIAL EQUATIONS FOR PRODUCTS OF TWO CLASSICAL ORTHOGONAL POLYNOMIALS

  • LEE, D.W.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.179-188
    • /
    • 2005
  • We give a method to derive partial differential equations for the product of any two classical orthogonal polynomials in one variable and thus find several new differential equations. We also explain with an example that our method can be extended to a more general case such as product of two sets of orthogonal functions.

Maximum Error Reduction for Fixed-width Modified Booth Multipliers Based on Error Bound Analysis (오차범위 분석을 통한 고정길이 modified Booth 곱셈기의 최대오차 감소)

  • Cho, Kyung-Ju;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.29-34
    • /
    • 2005
  • The maximum quantization error has serious effect on the performance of fixed-width multipliers that receive W-bit inputs and produce W-bit products. In this paper, we analyze the error bound of fixed-width modified Booth multipliers. Then, the estimation method for the number of additional columns for fixed-width multipliers is proposed to limit the maximum quantization error within a desired bound. In addition, it is shown that our methodology can be extended to reduced-width multipliers. By simulations, it is shown that the proposed error analysis method is useful to the practical design of fixed-width modified Booth multipliers.

Propagation of non-uniformly modulated evolutionary random waves in a stratified viscoelastic solid

  • Gao, Q.;Howson, W.P.;Watson, A.;Lin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.213-225
    • /
    • 2006
  • The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.