• 제목/요약/키워드: Expression and secretion

Search Result 926, Processing Time 0.025 seconds

Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells

  • Zhang, Liuping;Cui, Sheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.618-625
    • /
    • 2009
  • The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a $3{\beta}$-hydroxysteroid dehydrogenase ($3{\beta}$-HSD) staining method. The purified Leydig cells were exposed to different concentrations ($10^{-7}$ M to $10^{-4}$ M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and $3{\beta}$-HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of $10^{-5}$ M and $10^{-4}$ M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that $10^{-5}$ M and $10^{-4}$ M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and $3{\beta}$-HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only $10^{-5}$ M and $10^{-4}$ M daidzein up-regulated the StAR and $3{\beta}$-HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and $3{\beta}$-HSD-1.

Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway

  • Lorz, Laura Rojas;Kim, Donghyun;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.453-460
    • /
    • 2020
  • Background: BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive effects on allergic reactions in skin have not yet been described in detail, this study's main objective was to determine its efficacy in the treatment of atopic dermatitis (AD). Methods: High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both anti-DNP-IgE/DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187 alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent assay) and β-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells, we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38, and c-Jun N-terminal kinase proteins by immunoblotting. Results: BIOGF1K decreased the AD response by reducing both histamine and β-hexosaminidase release as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells. Conclusions: BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural approach for treating AD.

Pichia pastoris: A Recombinant Microfactory for Antibodies and Human Membrane Proteins

  • Goncalves, A.M.;Pedro, A.Q.;Maia, C.;Sousa, F.;Queiroz, J.A.;Passarinha, L.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.587-601
    • /
    • 2013
  • During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

Black soybean anthocyanins attenuate inflammatory responses by suppressing reactive oxygen species production and mitogen activated protein kinases signaling in lipopolysaccharide-stimulated macrophages

  • Kim, Jin Nam;Han, Sung Nim;Ha, Tae Joung;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.357-364
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Oxidative stress is closely related with inflammation and development of many diseases. Black soybean seed coat contains high amount of anthocyanins, which are well-known for free radical scavenging activities. This study investigated inflammatory response and action mechanism of black soybean anthocyanins with regard to antioxidant activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: RAW 264.7 cells were treated with anthocyanins extracted from black soybean seed coats in a concentration range of 12.5 to $100{\mu}g/mL$. The production of reactive oxygen species (ROS), secretion of pro-inflammatory mediators and cytokines, and the signaling in the mitogen activated protein kinases (MAPKs) pathway were examined. RESULTS: Black soybean anthocyanins significantly decreased LPS-stimulated production of ROS, inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$, and pro-inflammatory cytokines, including tumor necrosis factor ${\alpha}$ and interleukin-6, in a dose-dependent manner without cytotoxicity (P < 0.001). Black soybean anthocyanins downregulated the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells (P < 0.001). Moreover, black soybean anthocyanins inhibited LPS-induced phosphorylation of MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 (P < 0.001). CONCLUSION: These results suggest that black soybean anthocyanins exert anti-inflammatory activity by inhibiting ROS generation and subsequent MAPKs signaling, thereby inhibiting inflammatory responses.

Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin

  • Hwang, Eunson;Park, Sang-Yong;Yin, Chang Shik;Kim, Hee-Taek;Kim, Yong Min;Yi, Tae Hoo
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • Background: Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Methods: Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. Results: In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. Conclusion: These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.

Scientific review of the aesthetic uses of botulinum toxin type A

  • Park, Mee Young;Ahn, Ki Young
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Botulinum toxin type A (BoNT-A), onabotulinumtoxinA (Botox) was approved by the United States Food and Drug Administration for temporary improvement of glabellar lines in patients 65 years and younger in 2002, and has also been used widely for aesthetic purposes such as hyperhidrosis, body shape contouring, and other noninvasive facial procedures. BoNT-A inhibits presynaptic exocytosis of acetylcholine (ACh)-containing vesicles into the neuromuscular junction at cholinergic nerve endings of the peripheral nervous system, thereby paralyzing skeletal muscles. ACh is the most broadly used neurotransmitter in the somatic nervous system, preganglionic and postganglionic fibers of parasympathetic nerves, and preganglionic fibers or postganglionic sudomotor nerves of sympathetic nerves. The scientific basis for using BoNT-A in various cosmetic procedures is that its function goes beyond the dual role of muscle paralysis and neuromodulation by inhibiting the secretion of ACh. Although the major target organs for aesthetic procedures are facial expression muscles, skeletal body muscles, salivary glands, and sweat glands, which are innervated by the somatic or autonomic nerves of the peripheral cholinergic nerve system, few studies have attempted to directly explain the anatomy of the areas targeted for injection by addressing the neural physiology and rationale for specific aesthetic applications of BoNT-A therapy. In this article, we classify the various cosmetic uses of BoNT-A according to the relevant component of the peripheral nervous system, and describe scientific theories regarding the anatomy and physiology of the cholinergic nervous system. We also review critical physiological factors and conditions influencing the efficacy of BoNT-A for the rational aesthetic use of BoNT-A. We hope that this comprehensive review helps promote management policies to support long-term, safe, successful practice. Furthermore, based on this, we look forward to developing and expanding new advanced indications for the aesthetic use of BoNT-A in the future.

Antioxidant, anti-inflammatory, antibacterial and ovoprotective effects of mixture of Ulmi cortex and Smilacis rhizoma extracts (유백피, 토복령 추출물 혼합물의 항산화, 항염, 항균 및 난소세포 보호효과)

  • Jeon, Sang Kyu;Ahn, Jung Yun;Park, Su Mi;Park, Sun-Dong;Lee, Ju-Hee
    • Herbal Formula Science
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • Objectives : US extract is a mixture of each extract of Ulmi cortex and Smilacis rhizoma. In this study, we investigated the antioxidant, anti-inflammatory, antibacterial, and ovoprotective effects of US extract in in vitro model to identify potential candidates for improving female reproductive function. Methods : The antioxidant activity of US extract was measured using 1,1-diphenyl- 2-picrylhydrazyl free radical and superoxide anion radical scavenging assays. The anti-inflammatory effect of US extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were determined with a nitric oxide (NO) assay, enzyme linked immunosorbent assays, and western blots analysis. The antibacterial activity of US extract against vaginitis infection microorganisms were determined with disc diffusion and minimum inhibitory concentration assays. The ovoprotective effect of US extract on 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity in CHO-K1 cells were evaluated with a cell viability assay. Result : US extract showed good antioxidant capacity and inhibited LPS-induced NO production as well as iNOS and COX-2 expression and secretion of pro-inflammatory cytokine IL-6 without affecting the cell viability. It showed significant clear zones for Staphylococcus aureus and Candida albicans but did not indicate the clear zones for Escherichia coli and Enterococcus faecium. VCD-induced ovotoxicity in CHO-K1 cells was significantly reduced by US extract pre-treatment. Conclusions : These results demonstrate that US extract has antioxidant activity, anti-inflammatory effects on the LPS-stimulated macrophages, antibacterial activity against vaginitis infection microorganisms, and protective effects on the ovarian cells against VCD-induced ovotoxicity. These findings suggest that the US extract can be used as new prescriptions, supplements, functional foods, and cosmetics for improving female reproductive function.

Effect of Yeonkyo-san in Atopic Dermatitis Animal Model (연교산(連蘿散)이 아토피 동물 모델에 미치는 영향)

  • Kim Yun-Hee;Kang Tak-Lim;Park Jee-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • The purpose of this study is to examine closely effect that YKS used to atopic dermatitis disease patient get in atopy eruption control experimentally. We analyzed the expression of IgE, IL-6, IL-4, IL-5 and IL-13's level in serum, and IFN-${\gamma}'$ production by YKS extract. We also analyzed YKS extract get to NC/Nga mice's skin establishment analyzes neck-back skin after biopsy, and H&E method measured about epidermis and dermis part in comparison with control group. In this research YKS extract as treatment result to a NC/Nga mice, IgE and IL-6 content in serum decreased remarkably than control group. And decreased than result control group which measure IL-4, IL-5, IL-13's level in serum, and IFN-${\gamma}'$ production secreted in Th1 cell displayed increase by YKS extract. IL-4 and IFN-${\gamma}'s$ gene revelation amount displayed marked decrease than control group in result that observe effect that get in skin of a NC/Nga mice. Also, In culture supernatant which cultivate for 14 day after separate skin cell, IL-13 and IL-6 production decreased than control group. YKS extract get to NC/Nga mice's skin establishment analyzes neck-back skin after biopsy, and dye by H&E method decreased about epidermis and inflammation of dermis part remarkably than control group. These results suggest that Th1 cell and Th2 cell observe to be shifted by secretion amount of IL-4 and IFN-$\gamma$ by YKS extract could know that YKS extract can use usefully in allergy autoimmune disease.

The Suppression Effects of Fat Mass and Obesity Associated Gene on the Hair Follicle-Derived Neural Crest Stem Cells Differentiating into Melanocyte by N6-Methyladenosine Modifying Microphthalmia-Associated Transcription Factor

  • Zhiwei Shang;Haixia Feng;Liye Xia
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Background and Objectives: Melanocyte (MC), derived from neural crest stem cell (NCSC), are involved in the production of melanin. The mechanism by which NCSC differentiates to MC remains unclear. N6-methyladenosine (m6A) modification was applied to discuss the potential mechanism. Methods and Results: NCSCs were isolated from hair follicles of rats, and were obtained for differentiation. Cell viability, tyrosinase secretion and activity, and transcription factors were combined to evaluated the MC differentiation. RT-qPCR was applied to determine mRNA levels, and western blot were used for protein expression detection. Total m6A level was measured using methylated RNA immunoprecipitation (MeRIP) assay, and RNA immunoprecipitation was used to access the protein binding relationship. In current work, NCSCs were successfully differentiated into MCs. Fat mass and obesity associated gene (FTO) was aberrant downregulated in MCs, and elevated FTO suppressed the differentiation progress of NCSCs into MCs. Furthermore, microphthalmia-associated transcription factor (Mitf), a key gene involved in MC synthesis, was enriched by FTO in a m6A modification manner and degraded by FTO. Meanwhile, the suppression functions of FTO in the differentiation of NCSCs into MCs were reversed by elevated Mitf. Conclusions: In short, FTO suppressed the differentiating ability of hair follicle-derived NCSCs into MCs by m6A modifying Mitf.

An alternative method to reduce anaphylaxis by moxibustion

  • Jeong, Hyun-Ja;Nam, Sun-Young;Lee, Byong-Joo;Kim, Min-Gi;Kim, Jeong-Hwa;Kim, Hyung-Min
    • CELLMED
    • /
    • v.4 no.2
    • /
    • pp.12.1-12.12
    • /
    • 2014
  • Epinephrine is a critical drug for patients at risk for anaphylaxis. Here, we suggest moxibustion as an alternative method to reduce anaphylaxis. Moxibustion was applied to the Shimen (CV5) acupoint and found to attenuate compound 48/80-induced mortality. Capsazepine, a transient receptor potential vanilloid (TRPV) 1 antagonist, significantly improved overall survival rates compared to groups treated with moxibustion or 2-aminoethoxydiphenyl borate (an activator of TRPV1, 2, and 3). Probenecid (a TRPV2 agonist) also increased survival rate and reduced histamine levels. Survival rates increased by moxibustion and probenecid were completely inhibited by ruthenium red (a TRPV2 and 3 antagonist) and gadolinium chloride (general TRPV antagonist), respectively. Passive cutaneous anaphylaxis and ear swelling were significantly reduced by moxibustion and probenecid (p < 0.05). In cardiomyocytes, TRPV2 was over-expressed by compound 48/80 and histamine but this increased TRPV2 expression decreased to baseline with moxibustion and probenecid treatment. In addition, intracellular calcium levels increased by compound 48/80 were reduced by probenecid. Overall, these findings suggest that the reduction of anaphylaxis caused by moxibustion could represent a new mechanism of moxibustion related to the regulation of TRPV2 activation and promotion of epinephrine secretion.