• 제목/요약/키워드: Expression Feature

검색결과 531건 처리시간 0.023초

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

암 예후를 효과적으로 예측하기 위한 Node2Vec 기반의 유전자 발현량 이미지 표현기법 (A Node2Vec-Based Gene Expression Image Representation Method for Effectively Predicting Cancer Prognosis)

  • 최종환;박상현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권10호
    • /
    • pp.397-402
    • /
    • 2019
  • 암 환자에게 적절한 치료계획을 제공하기 위해 암의 진행양상 또는 환자의 생존 기간 등에 해당하는 환자의 예후를 정확히 예측하는 것은 생물정보학 분야에서 다루는 중요한 도전 과제 중 하나이다. 많은 연구에서 암 환자의 유전자 발현량 데이터를 이용하여 환자의 예후를 예측하는 기계학습 모델들이 많이 제안되어 오고 있다. 유전자 발현량 데이터는 약 17,000개의 유전자에 대한 수치값을 갖는 고차원의 수치형 자료이기에, 기존의 연구들은 특징 선택 또는 차원 축소 전략을 이용하여 예측 모델의 성능 향상을 도모하였다. 그러나 이러한 접근법은 특징 선택과 예측 모델의 훈련이 분리되어 있어서, 기계학습 모델은 선별된 유전자들이 생물학적으로 어떤 관계가 있는지 알기가 어렵다. 본 연구에서는 유전자 발현량 데이터를 이미지 형태로 변환하여 예후 예측이 효과적으로 특징 선택 및 예후 예측을 수행할 수 있는 기법을 제안한다. 유전자들 사이의 생물학적 상호작용 관계를 유전자 발현량 데이터에 통합하기 위해 Node2Vec을 활용하였으며, 2차원 이미지로 표현된 발현량 데이터를 효과적으로 학습할 수 있도록 합성곱 신경망 모델을 사용하였다. 제안하는 모델의 성능은 이중 교차검증을 통해 평가되었고, 유전자 발현량 데이터를 그대로 이용하는 기계학습모델보다 우월한 예후 예측 정확도를 가지는 것이 확인되었다. Node2Vec을 이용한 유전자 발현량의 새로운 이미지 표현법은 특징 선택으로 인한 정보의 손실이 없어 예측 모델의 성능을 높일 수 있으며, 이러한 접근법이 개인 맞춤형 의학의 발전에 이바지할 것으로 기대한다.

컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류 (Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector)

  • 유제훈;고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

심리로봇적용을 위한 얼굴 영역 처리 속도 향상 및 강인한 얼굴 검출 방법 (Improving the Processing Speed and Robustness of Face Detection for a Psychological Robot Application)

  • 류정탁;양진모;최영숙;박세현
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.57-63
    • /
    • 2015
  • 얼굴 표정인식 기술은 다른 감정인식기술에 비해 비접촉성, 비강제성, 편리성의 특징을 가지고 있다. 비전 기술을 심리로봇에 적용하기 위해서는 표정인식을 하기 전 단계에서 얼굴 영역을 정확하고 빠르게 추출할 수 있어야 한다. 본 논문에서는 성능이 향상된 얼굴영역 검출을 위해서 먼저 영상에서 YCbCr 피부색 색상 정보를 이용하여 배경을 제거하고 상태 기반 방법인 Haar-like Feature 방법을 이용하였다. 입력영상에 대하여 배경을 제거함으로써 처리속도가 향상된, 배경에 강건한 얼굴검출 결과를 얻을 수 있었다.

ICA-factorial 표현법을 이용한 얼굴감정인식 (Facial Expression Recognition using ICA-Factorial Representation Method)

  • 한수정;곽근창;고현주;김승석;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.371-376
    • /
    • 2003
  • 본 논문에서는 효과적인 정보를 표현하는 Independent Component Analysis(ICA)-factorial 표현방법을 이용하여 얼굴감정 인식을 수행한다. 얼굴감정인식은 두 단계인 특징추출 과정과 인식과정에 의해 이루어진다. 먼저 특징추출방법은 주성분 분석(Principal Component Analysis)을 이용하여 얼굴영상의 고차원 공간을 저차원 특징공간으로 변환한 후 ICA-factorial 표현방법을 통해 좀 더 효과적으로 특징벡터를 추출한다. 인식단계는 최소거리 분류방법인 유클리디안 거리에 근거한 K-Nearest Neighbor 알고리즘으로 얼굴감정을 인식한다. 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 공포, 혐오)에 대해 얼굴 감정 데이터베이스를 구축하고 실험해본 결과 기존의 방법보다 좋은 인식 성능을 얻었다.

Reverting Gene Expression Pattern of Cancer into Normal-Like Using Cycle-Consistent Adversarial Network

  • Lee, Chan-hee;Ahn, TaeJin
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.275-283
    • /
    • 2018
  • Cancer show distinct pattern of gene expression when it is compared to normal. This difference results malignant characteristic of cancer. Many cancer drugs are targeting this difference so that it can selectively kill cancer cells. One of the recent demand for personalized treating cancer is retrieving normal tissue from a patient so that the gene expression difference between cancer and normal be assessed. However, in most clinical situation it is hard to retrieve normal tissue from a patient. This is because biopsy of normal tissues may cause damage to the organ function or a risk of infection or side effect what a patient to take. Thus, there is a challenge to estimate normal cell's gene expression where cancers are originated from without taking additional biopsy. In this paper, we propose in-silico based prediction of normal cell's gene expression from gene expression data of a tumor sample. We call this challenge as reverting the cancer into normal. We divided this challenge into two parts. The first part is making a generator that is able to fool a pretrained discriminator. Pretrained discriminator is from the training of public data (9,601 cancers, 7,240 normals) which shows 0.997 of accuracy to discriminate if a given gene expression pattern is cancer or normal. Deceiving this pretrained discriminator means our method is capable of generating very normal-like gene expression data. The second part of the challenge is to address whether generated normal is similar to true reverse form of the input cancer data. We used, cycle-consistent adversarial networks to approach our challenges, since this network is capable of translating one domain to the other while maintaining original domain's feature and at the same time adding the new domain's feature. We evaluated that, if we put cancer data into a cycle-consistent adversarial network, it could retain most of the information from the input (cancer) and at the same time change the data into normal. We also evaluated if this generated gene expression of normal tissue would be the biological reverse form of the gene expression of cancer used as an input.

간소화된 주성분 벡터를 이용한 벡터 그래픽 캐릭터의 얼굴표정 생성 (The facial expression generation of vector graphic character using the simplified principle component vector)

  • 박태희
    • 한국정보통신학회논문지
    • /
    • 제12권9호
    • /
    • pp.1547-1553
    • /
    • 2008
  • 본 논문은 간소화된 주성분 벡터를 이용한 벡터 그래픽 캐릭터의 다양한 얼굴 표정 생성 방법을 제안한다. 먼저 Russell의 내적 정서 상태에 기반하여 재정의된 벡터 그래픽 캐릭터들의 9가지 표정에 대해 주성분 분석을 수행한다. 이를 통해 캐릭터의 얼굴 특성과 표정에 주된 영향을 미치는 주성분 벡터를 찾아내고, 간소화된 주성분 벡터로부터 얼굴 표정을 생성한다. 또한 캐릭터의 특성과 표정의 가중치 값을 보간함으로써 자연스러운 중간 캐릭터 및 표정을 생성한다. 이는 얼굴 애니메이션에서 종래의 키프레임 저장 공간을 상당히 줄일 수 있으며, 적은 계산량으로 중간 표정을 생성할 수 있다. 이에 실시간 제어를 요구하는 웹/모바일 서비스, 게임 등에서 캐릭터 생성 시스템의 성능을 상당히 개선할 수 있다.

Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구 (A Study on Facial Expression Recognition using Boosted Local Binary Pattern)

  • 원철호
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1357-1367
    • /
    • 2013
  • 최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$$LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$$LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.

모델기반 특징추출을 이용한 지역변화 특성에 따른 개체기반 표정인식 (Facial Expression Recognition with Instance-based Learning Based on Regional-Variation Characteristics Using Models-based Feature Extraction)

  • 박미애;고재필
    • 한국멀티미디어학회논문지
    • /
    • 제9권11호
    • /
    • pp.1465-1473
    • /
    • 2006
  • 본 논문에서는 Active Shape Models(ASM)과 상태기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제시한다. ASM을 이용하여 하나의 입력 영상에 대한 얼굴요소특징점들을 정합하고, 그 과정에서 생성되는 모양변수벡터를 추출한다. 동영상에 대해 추출되는 모양변수벡터 집합을 세 가지 상태 중 한 가지를 가지는 상태벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 표정별 표정변화에 따른 변화영역의 차이를 고려한 새로운 유사도 측정치를 제안한다. 공개데이터베이스 KCFD에 대한 실험에서는 제안한 측정치와 기존의 이친 측정치를 사용한 k-NN의 인식률이 k가 1일 때 각각 89.1% 및 86.2%을 보임으로써, 제안한 측정치가 기존의 이진 측정치보다 더 높은 인식률을 나타내는 것을 보인다.

  • PDF

가변 크기 블록(Variable-sized Block)을 이용한 얼굴 표정 인식에 관한 연구 (Study of Facial Expression Recognition using Variable-sized Block)

  • 조영탁;류병용;채옥삼
    • 융합보안논문지
    • /
    • 제19권1호
    • /
    • pp.67-78
    • /
    • 2019
  • 본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.