• Title/Summary/Keyword: Expression Feature

검색결과 531건 처리시간 0.075초

기하 증명에서 중학생들의 시각의존적 비약 인식에 대한 연구 (A Study on Secondary School Student's Recognition of Vision-dependent Jump in the Geometry Proof)

  • 강정기
    • East Asian mathematical journal
    • /
    • 제30권2호
    • /
    • pp.223-248
    • /
    • 2014
  • Although a figure expression has a role of mediator in the geometry proof, it is not admitted to prove based on a vision-dependent feature. This study starts from the problem that although a figure expression has an important role in the geometry proof, a lot of students don't understand the limit of vision-dependent feature in the figure expression. We will investigate this problem to understand cognitive characteristic of students. Moreover, we try to get the didactical implications. To do this, we investigate the cognitive ability for a limit of vision-dependent feature, targeting a class of middle school seniors And we will have a personal interview with four students who show a lack of sense of limit of vision-dependent feature in the figure expression and two students for who it is difficult to judge that they don't understand the limit of vision-dependent feature in the figure expression. We will observe and analyzed the cognitive characteristic of six students. Based on the analysis, we will finally discuss on the didactical implications to help students understand the limit of vision-dependent feature in the figure expression.

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • 한국산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.23-31
    • /
    • 2002
  • 본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 얼굴 표정을 인식을 위한 특징벡터를 추출하는 새로운 방법을 제안하였다. 추출된 특징벡터는 얼굴 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는다. 얼굴 표정을 인식하기 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 두 과정으로 나뉘어진다. 특징벡터는 얼굴 화상에 대하여 추정된 깁스분포를 바탕으로 수정된 2-D 조건부 모멘트로 구성된다. 얼굴 표정인식 과정에서는 패턴인식에 널리 사용되는 이산형 HMM를 사용한다. 제안된 방법에 대한 성능평가를 위하여 4가지의 얼굴 표정 인식 실험을 Workstation에서 실험한 결과, 제안된 얼굴 표정 인식 방법이 95% 이상의 성능을 보여주었다.

  • PDF

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.11-16
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

  • PDF

얼굴 표정 인식을 위한 방향성 LBP 특징과 분별 영역 학습 (Learning Directional LBP Features and Discriminative Feature Regions for Facial Expression Recognition)

  • 강현우;임길택;원철호
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.748-757
    • /
    • 2017
  • In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.

유전알고리즘을 이용한 유전자발현 데이타상의 특징-분류기쌍 최적 앙상블 탐색 (Searching for Optimal Ensemble of Feature-classifier Pairs in Gene Expression Profile using Genetic Algorithm)

  • 박찬호;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.525-536
    • /
    • 2004
  • 유전발현 데이타는 생명체의 특정 조직에서 채취한 샘플을 microarray상에서 측정한 것으로, 유전자들의 발현 정도가 수치로 나타난 데이타이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현정도는 차이를 보이기 때문에, 유전발현 데이타를 통하여 질병을 분류할 수 있다. 이러한 분류에 모든 유전자들이 관여하지는 않으므로 관련 유전자를 선별하는 작업인 특징선택이 필요하며, 선택된 유전자들을 적절히 분류하는 방법이 필요하다. 본 논문에서는 상관계수, 유사도, 정보이론 등에 기반을 둔 7가지 특징선택 방법과 대표적인 6가지 분류기에 대하여 특징-분류기 쌍의 최적 앙상블을 탐색하기 위한 유전자 알고리즘 기반 방법을 제안한다. 두 가지 암 관련 유전자 발현 데이타에 대하여 leave-one-out cross validation을 포함한 실험을 해본 결과, 림프종 데이타와 대장암 데이타 모두 단일 특징-분류기 쌍보다 훨씬 우수한 성능을 보이는 앙상블들을 발견할 수 있었다.

SIFT 기술자를 이용한 얼굴 표정인식 (Facial Expression Recognition Using SIFT Descriptor)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.89-94
    • /
    • 2016
  • 본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.

특징점 기반의 적응적 얼굴 움직임 분석을 통한 표정 인식 (Feature-Oriented Adaptive Motion Analysis For Recognizing Facial Expression)

  • 노성규;박한훈;신홍창;진윤종;박종일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.667-674
    • /
    • 2007
  • Facial expressions provide significant clues about one's emotional state; however, it always has been a great challenge for machine to recognize facial expressions effectively and reliably. In this paper, we report a method of feature-based adaptive motion energy analysis for recognizing facial expression. Our method optimizes the information gain heuristics of ID3 tree and introduces new approaches on (1) facial feature representation, (2) facial feature extraction, and (3) facial feature classification. We use minimal reasonable facial features, suggested by the information gain heuristics of ID3 tree, to represent the geometric face model. For the feature extraction, our method proceeds as follows. Features are first detected and then carefully "selected." Feature "selection" is finding the features with high variability for differentiating features with high variability from the ones with low variability, to effectively estimate the feature's motion pattern. For each facial feature, motion analysis is performed adaptively. That is, each facial feature's motion pattern (from the neutral face to the expressed face) is estimated based on its variability. After the feature extraction is done, the facial expression is classified using the ID3 tree (which is built from the 1728 possible facial expressions) and the test images from the JAFFE database. The proposed method excels and overcomes the problems aroused by previous methods. First of all, it is simple but effective. Our method effectively and reliably estimates the expressive facial features by differentiating features with high variability from the ones with low variability. Second, it is fast by avoiding complicated or time-consuming computations. Rather, it exploits few selected expressive features' motion energy values (acquired from intensity-based threshold). Lastly, our method gives reliable recognition rates with overall recognition rate of 77%. The effectiveness of the proposed method will be demonstrated from the experimental results.

  • PDF

혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식 (Emotion Recognition of Facial Expression using the Hybrid Feature Extraction)

  • 변광섭;박창현;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF

실시간 얼굴 표정 인식을 위한 새로운 사각 특징 형태 선택기법 (New Rectangle Feature Type Selection for Real-time Facial Expression Recognition)

  • 김도형;안광호;정명진;정성욱
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.130-137
    • /
    • 2006
  • In this paper, we propose a method of selecting new types of rectangle features that are suitable for facial expression recognition. The basic concept in this paper is similar to Viola's approach, which is used for face detection. Instead of previous Haar-like features we choose rectangle features for facial expression recognition among all possible rectangle types in a 3${\times}$3 matrix form using the AdaBoost algorithm. The facial expression recognition system constituted with the proposed rectangle features is also compared to that with previous rectangle features with regard to its capacity. The simulation and experimental results show that the proposed approach has better performance in facial expression recognition.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.