• 제목/요약/키워드: Exposure scenarios

검색결과 130건 처리시간 0.029초

위해성 평가 기법에 따른 토양 불소 기준안 연구 (Derivation of Soil Fluorine Standards Based on a Human Health Risk Assessment Method)

  • 정승우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권3호
    • /
    • pp.14-22
    • /
    • 2024
  • This study established risk-based fluoride soil contamination standards according to the Korean Soil Contaminant Risk Assessment Guidelines (SRAG). Ten exposure scenarios were evaluated, broadly categorized into Scenario 1, which used the default parameters from the current SRAG, and Scenario 2, which used the latest exposure factors and bio-concentration factors. Fluoride soil standards corresponding to a total hazard index (HI) of 1.0 were determined for each scenario. For children in agricultural areas, the derived risk-based soil fluoride standard was 70 mg/kg for Scenario 1 and 27 mg/kg for Scenario 2. In industrial areas, the risk-based fluoride soil standard was 2200 mg/kg in Scenario 1 and 2300 mg/kg in Scenario 2. This study clearly demonstrated that the crop ingestion exposure pathway exerted predominent influence on the estimated human health risk standards. Additionally, using the Added Risk Approach and considering soil background concentrations, the total fluoride soil standards for residential areas ranged from 232 mg/kg to 444 mg/kg, while the standards for industrial areas ranged from 2405 mg/kg to 2674 mg/kg.

Global Assessment of Climate Change-Associated Drought Risk

  • 김혜진;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.397-397
    • /
    • 2019
  • With the consequences of climate change becoming more evident, research on climate-associated risks has become a basis for climate adaptation and mitigation. Amongst the different sectors and natural resources considered in assessing such risks, drought is one impact to our environment that experiences stress from climate change but is often overlooked and has the potential to bring severe consequences when drought occurs. For example, when temperatures are higher, water demand increases and water supply decreases; when precipitation patterns fluctuate immensely, floods and droughts occur more frequently at greater magnitudes, putting stress on ecosystems. Hence, it is important for us to evaluate drought risk to observe how different climate change and socioeconomic scenarios can affect this vital life resource. In this study, we review the context of drought risk on the basis of climate change impacts and socioeconomic indicators. As underlined in the IPCC AR5 report, the risks are identified by understanding the vulnerability, exposure, and hazards of drought. This study analyzed drought risk on a global scale with different RCP scenarios projected until the year 2099 with a focus on the variables population, precipitation, water resources, and temperature.

  • PDF

기후변화에 따른 보건 분야의 취약성 평가: O3을 중심으로 (Vulnerability Assessment of Human Health Sector due to Climate Change: Focus on Ozone)

  • 이재범;이현주;문경정;홍성철;김덕래;송창근;홍유덕
    • 한국대기환경학회지
    • /
    • 제28권1호
    • /
    • pp.22-38
    • /
    • 2012
  • Adaptation of climate change is necessary to avoid unexpected impacts of climate change caused by human activities. Vulnerability refers to the degree to which system cannot cope with impacts of climate change, encompassing physical, social and economic aspects. Therefore the quantification of climate change impacts and its vulnerability is needed to identify vulnerable regions and to setup the proper strategies for adaptation. In this study, climate change vulnerability is defined as a function of climate exposure, sensitivity, and adaptive capacity. Also, we identified regions vulnerable to ozone due to climate change in Korea using developed proxy variables of vulnerability of regional level. 18 proxy variables are selected through delphi survey to assess vulnerability over human health sector for ozone concentration change due to climate change. Also, we estimate the weighting score of proxy variables from delphi survey. The results showed that the local regions with higher vulnerability index in the sector of human health are Seoul and Daegu, whereas regions with lower one are Jeollanam-do, Gyeonggi-do, Gwangju, Busan, Daejeon, and Gangwon-do. The regions of high level vulnerability are mainly caused by their high ozone exposure. We also assessed future vulnerability according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1FI, A1T, A1B, B2, and B1 scenarios in 2020s, 2050s and 2100s. The results showed that vulnerability increased in all scenarios due to increased ozone concentrations. Especially vulnerability index is increased by approximately 2 times in A1FI scenarios in the 2020s. This study could support regionally adjusted adaptation polices and the quantitative background of policy priority as providing the information on the regional vulnerability of ozone due to climate change in Korea.

都市大氣汚染이 市民健康에 미치는 危險性 評價 模型의 開發에 관한 硏究 (A Study on the Development of the Air Pollution-Health Risk Model : The case of Seoul, Korea.)

  • 김귀곤;김명진;성현찬
    • 한국대기환경학회지
    • /
    • 제5권2호
    • /
    • pp.30-35
    • /
    • 1989
  • To effectively develop and evaluate air pollution control measures, health risk rates due to air pollution must be identified. This article describes the application of a visual analysis and an air pollution-health risk model for determining the impacts of carbon monoxide (CO) exposure on angina pectoris patients in a metropolitan area. The procedures used for analyzing the relationship between CO exposure and the related increase in angina angina attacks for stable angina pectoris patients are described through a case study in the city of Seoul, Korea and the findings show that air-pollution-health risk model and visual analysis can be effective tools for environmental decision-makers, allowing air pollution control scenarios to be developed and evaluated for environmental protection. One of the features of this study is to provide a methodology for translating clinical findings into estimates of the relative contributions of air pollution to all causes of a particular disease. Therefore, there must be appropriate recognition of the uncertainties involved in the study.

  • PDF

실내 라돈오염 해석을 위한 2구역 모델의 민감도 및 불확실성 분석 (Sensitivity and Uncertainty Analysis of Two-Compartment Model for the Indoor Radon Pollution)

  • 유동한;이한수;김상준;양지원
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.327-334
    • /
    • 2002
  • The work presents sensitivity and uncertainty analysis of 2-compartment model for the evaluation of indoor radon pollution in a house. Effort on the development of such model is directed towards the prediction of the generation and transfer of radon in indoor air released from groundwater. The model is used to estimate a quantitative daily human exposure through inhalation of such radon based on exposure scenarios. However, prediction from the model has uncertainty propagated from uncertainties in model parameters. In order to assess how model predictions are affected by the uncertainties of model inputs, the study performs a quantitative uncertainty analysis in conjunction with the developed model. An importance analysis is performed to rank input parameters with respect to their contribution to model prediction based on the uncertainty analysis. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor pollution by radon released from groundwater.

콘텐츠유통에서의 수익성 향상을 위한 DOI 활용 (Usage of DOI to Improve Profitability in Contents Distribution)

  • 박승범;이상원
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.43-44
    • /
    • 2013
  • When content is presented within an appropriate context, that exposure for digital contents providers is most effective. We research on how DOI could increase the profitability of content distribution strategies. We examine traditional works of distribution channels and setup DOI-enabled scenarios.

  • PDF

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

국소환경 모델을 이용한 초미세먼지(PM2.5) 노출 기여율 평가 (Evaluation of PM2.5 Exposure Contribution Using a Microenvironmental Model)

  • 신지훈;최영태;김동준;민기홍;우재민;김동준;신정현;조만수;성경화;이종대;양원호
    • 한국환경보건학회지
    • /
    • 제48권2호
    • /
    • pp.59-65
    • /
    • 2022
  • Background: Since people move through microenvironments rather than staying in one place, they may be exposed to both indoor and outdoor PM2.5 concentrations. Objectives: The aim of this study was to assess the exposure level of each sub-population group and evaluate the contribution rate of the major microenvironments. Methods: Exposure scenarios for sub-population groups were constructed on the basis of a 2019 Time-Use survey and the previous literature. A total of five population groups were classified and researchers wearing MicroPEM simulated monitoring PM2.5 exposure concentrations in real-time over three days. The exposure contribution for each microenvironment were evaluated by multiplying the inhalation rate and the PM2.5 exposure concentration levels. Results: Mean PM2.5 concentrations were 33.0 ㎍/m3 and 22.5 ㎍/m3 in Guro-gu and Wonju, respectively. When the exposure was calculated considering each inhalation rate and concentration, the home showed the highest exposure contribution rate for PM2.5. As for preschool children, it was 90.8% in Guro-gu, 94.1% in Wonju. For students it was 65.3% and 67.3%. For housewives it was 98.2% and 95.8%, and 59.5% and 91.7% for office workers. Both regions had higher exposure to PM2.5 among the elderly compared to other populations, and their PM2.5 exposure contribution rates were 98.3% and 94.1% at home for Guro-gu and Wonju, respectively. Conclusions: The exposure contribution rate could be dependent on time spent in microenvironments. Notably, the contribution rate of exposure to PM2.5 at home was the highest because most people spend the longest time at home. Therefore, microenvironments such as home with a higher contribution rate of exposure to PM2.5 could be managed to upgrade public health.

우리나라 농민의 Chlorpyrifos에 대한 피부 위해성 평가 (Human Dermal Risk Assessment on Chlorpyrifos of Korean Farmers)

  • 정경미;이효민;이은희;이선희;김진화;심영용;홍진태;이용욱
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권3호
    • /
    • pp.187-198
    • /
    • 2002
  • Chlorpyrifos is an organophosphate insecticide and one of the most commonly and widely used insecticide. However, a little known about the dermal risk of chlorpyrifos on human being. Therefore, this study was conducted for the dermal risk assessment after exposure to chlorpyrifos in Korean farmers. First, skin irritation by chlorpyrifos (10 mg/$\textrm{cm}^2$, 50 mg/$\textrm{cm}^2$, 100 mg/$\textrm{cm}^2$, 250 mg/$\textrm{cm}^2$ in acetone) was determined in rabbits for 5 days considering the usage of chlorpyrifos short term highly exposure. The index of skin irritation by chlorpyrifos was increased in each dose and length of exposure dependent manners. Next, using benchmark dose (BMD$_{5}$) approach, the dose-response relationship was assessed to calculate the reference dose (RfD). The value of RfD was 2.84 $\mu\textrm{g}$/kg/day from 142.16 $\mu\textrm{g}$/kg/day BMD5 value divided uncertainty factor 50. Finally, we assessed human dermal risk of chlorpyrifos with exposure level and RfD. Skin absorbed levels were assumed with several exposure scenarios encounting the circumstances of exposure that application method, protection equipment and cloth, exposure time and exposure frequency during chlorpyrifos spraying. By the comparison of skin absorbed dose with the reference dose, it was identified that risk values (risk index) to skin chlorpyrifos exposure were 0.958 from the point of above results and it was recommended that the occurrence of hazard effect (skin irritation toxicity) of chlorpyrifos would not be expected. Risk index was smaller than 1 in the case of spraying vehicle mounted application, 1hour exposure time and wearing protective cloth exposure. Whereas, risk index was above 1 in the case of hand-held application, 2hour exposure time and wearing common cloth. Comparing two kinds of application method, total risk index of the hand held application (1.67) was higher than vehicle mounted (0.27). Therefore, chlorpyrifos skin exposure was mainly affected by application equipment and applied form. The results of risk assessment on the human dermal toxicity of chlorpyrifos should be required to control in keeping safety rules, skin surface area available for contact, spraying time ,and spraying frequency.y.

  • PDF

국내 알루미늄 노출실태 및 노출기준 개정 제안 (Proposals for Revising the Occupational Exposure Limits for Aluminum in Korea)

  • 김승원;피영규;백용준;정태진;이혜실
    • 한국산업보건학회지
    • /
    • 제34권1호
    • /
    • pp.85-97
    • /
    • 2024
  • Objectives: This study was intended to investigate the revision status of the occupational exposure standards for aluminum at home and abroad; to investigate worker exposure at domestic aluminum manufacturing and handling workplaces; to conduct social and economic evaluation for the revision of domestic aluminum exposure limits. Methods: We investigated the current status of occupational exposure limits for aluminum at home and abroad, and analyzed supporting data. An exposure survey was conducted targeting domestic aluminum manufacturing and handling workplaces. Based on these, revised aluminum occupational exposure limits were proposed. Results: The major aluminum exposure limits at home and abroad show a notable difference. The toxicity of aluminum, which was revealed through animal experiments and epidemiological investigations. The average concentration of aluminum in the air at 12 workplaces was 0.016 mg/m3, and the maximum was 0.0776 mg/m3. When total dust and respiratory dust were measured side by side and simultaneously for the same process, 12.1% of the total mass concentration of aluminum dust was respiratory dust. As a result of measuring and comparing the size distribution of dust with an optical particle counter in real time, 48.1% of the total dust in the form of welding fume and pyro-powder was respiratory dust. Based on the literature review and workplace survey, three proposals for changing the aluminum exposure limit were proposed. Proposal (1): For all types, 10 mg/m3 is unified as the exposure limit except for soluble salts and alkyls. Proposal (2): 1(R) mg/m3 as the exposure limit for all forms except soluble salts and alkyl. Proposal (3): 1(R) mg/m3 for pyro-powder and welding fume, and 10 mg/m3 for metal dust, aluminum oxide, and insoluble compounds as exposure standards. A pyro-powder was defined as dry aluminum powder of 200 mesh size (74 ㎛) or smaller (larger size classified as metal dust). Reason for setting: In the workplace survey, the ratio of respiratory dust to total dust was analyzed to be about 1:10, so it was judged that the domestic standard and the ACGIH standard were compatible. Conclusions: In all scenarios according to the revision of the exposure standard, the B/C ratio was greater than 1 or only benefits existed, so it was evaluated as sufficiently reasonable as a result of the socio-economic evaluation.