• Title/Summary/Keyword: Exposure System

Search Result 2,357, Processing Time 0.027 seconds

Exploratory Study on Causality of Foreign Exchange Exposure and Hedge Strategy: Systems Thinking Approach (환노출과 환노출 완화 전략의 인과관계에 관한 탐색적 연구 : 시스템 사고에 의한 접근)

  • Eom, Jae-Gun;Chung, Chang-Kwon;Sul, Wonsik
    • Korean System Dynamics Review
    • /
    • v.15 no.2
    • /
    • pp.97-131
    • /
    • 2014
  • The purpose of this study is to analyze Foreign Exchange(FX) exposure and FX hedge strategy based on the systems thinking perspective using causal loop diagrams. FX exposure has been a critical issue on a business management. Many studies in Korea have researches on variables which make effects to the company value. This study displays causal loop diagrams(CLDs) on these issues. In order to make CLD more objective, most causalities are articulated from recent 72 studies (1998~2013) of domestic top journals. This approach is valuable in that it is the first try to draw all the causalities from various literature review regarding FX exposure and FX hedge strategy. This study is expected to make a useful and basic material to research the financial issues of corporate, as the first research to dynamically understand FX exposure and FX hedge strategy.

  • PDF

The Comparative Analysis of Exposure Conditions between F/S and C/R System for an Ideal Image in Simple Abdomen (복부 단순촬영의 이상적 영상구현을 위한 F. S system과 C.R system의 촬영조건 비교분석)

  • Son, Sang-Hyuk;Song, Young-Geun;Kim, Je-Bong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • 1. Purpose : This study is to present effective exposure conditions to acquire the best image of simple abdomen in Film Screen (F.S) system and Computed Radiography (C.R) system. 2. Method : In the F.S system, while an exposure condition was fixed as 70kVp, images of a patients simple abdomen were taken under the different mAs exposure conditions. Among these images, the best one was chosen by radiologists and radiological technologists. In the C.R system, the best image of the same patient was acquired with the same method from the F.S system. Both characteristic curves from F.S system and C.R system were analyzed. 3. Results : In the F.S system, the best exposure condition of simple abdomen was 70kVp and 20mAs. In the CR system, with the fixed condition at 70kVp, the image densities of human organs, such as liver, kidney, spleen, psoas muscle, lumbar spine body and iliac crest, were almost same despite different environments (3.2mAs, 8mAs, 12mAs, 16mAs and 20mAs). However, when the exposure conditions were over or under (below) 12mAs, the images between the abdominal wall and the directly exposed part became blurred because the gap of density was decreased. In the C.R system, while the volume of mAs was decreased, an artifact of quantum mottle was increased. 4. Conclusion : This study shows that the exposure condition in the C.R system can be reduced 40% than in the F.S system. This paper concluded that when the exposure conditions are set in CR environment, after the analysis of equipment character, such as image processing system(EDR : Exposure Data Recognition processing), PACS and so on, the high quality of image with maximum information can be acquired with a minimum exposure dose.

  • PDF

VIBRATION ANALYSIS OF PCB MANUFACTURING SYSTEM USING MASKLESS EXPOSURE METHOD (Maskless 방식을 이용한 PCB 생산시스템의 진동 해석)

  • Jang, Won-Hyuk;Lee, Jae-Mun;Cho, Myeong-Woo;Kim, Joung-Su;Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.421-426
    • /
    • 2009
  • This paper presents vibration analysis of maskless exposure module in Printed Circuit Board (PCB) manufacturing system. In order to complete exposure process in PCB, masking type module has been widely used in electronics industries. However, masking process confronts some limitations of application due to higher production cost for masking as well as lower printing resolution. Therefore, maskless exposure module is started to be in the spotlight for flexible production system to meet the needs of fabrication in variable patterns at low cost. Since maskless exposure process adopts direct patterning to PCB, vibration problems become more critical compared to conventional masking type process. Moreover, movements of exposure engine as well as stage generate vibration sources in the system. Thus, it is imperative to analyze the vibration characteristics for the maskless exposure module to improve the quality and accuracy of PCB. In this study, vibration analysis using the Finite Element Analysis is conducted to identify the critical structural parts deteriorating vibration performance. Also, Experimental investigations are conducted by single/dual encoder measurement process under the operating module speed. Measurement points of vibration are selected by three places, which are base of stage, exposure engine and top of stage, to check the effect of vibration from the exposure engine. Comparisons between analysis results and experimental measurement are conducted to confirm the accuracy of analysis results including the developed FE model. Finally, this studies show feasibility of optimal design using the developed FE analysis model.

  • PDF

Vibration Analysis of PCB Manufacturing System Using Maskless Exposure Method (Maskless 방식을 이용한 PCB생산시스템의 진동 해석)

  • Jang, Won-Hyuk;Lee, Jae-Mun;Cho, Myeong-Woo;Kim, Joung-Su;Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1322-1328
    • /
    • 2009
  • This paper presents vibration analysis of maskless exposure module in printed circuit board(PCB) manufacturing system. In order to complete exposure process in PCB, masking type module has been widely used in electronics industries. However, masking process confronts some limitations of application due to higher production cost for masking as well as lower printing resolution. Therefore, maskless exposure module is started to be in the spotlight for flexible production system to meet the needs of fabrication in variable patterns at low cost. Since maskless exposure process adopts direct patterning to PCB, vibration problems become more critical compared to conventional masking type process. Moreover, movements of exposure engine as well as stage generate vibration sources in the system. Thus, it is imperative to analyze the vibration characteristics for the maskless exposure module to improve the quality and accuracy of PCB. In this study, vibration analysis using the finite element analysis is conducted to identify the critical structural parts deteriorating vibration performance. Also, Experimental investigations are conducted by single/dual encoder measurement process under the operating module speed. Measurement points of vibration are selected by three places, which are base of stage, exposure engine and top of stage, to check the effect of vibration from the exposure engine. Comparisons between analysis results and experimental measurement are conducted to confirm the accuracy of analysis results including the developed FE model. Finally, this studies show feasibility of optimal design using the developed FE analysis model.

Occupational Exposure to Antineoplastic Drugs: Identification of Job Categories Potentially Exposed throughout the Hospital Medication System

  • Hon, Chun-Yip;Teschke, Kay;Chua, Prescillia;Venners, Scott;Nakashima, Lynne
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.273-281
    • /
    • 2011
  • Objectives: Studies examining healthcare workers' exposure to antineoplastic drugs have focused on the drug preparation or drug administration areas. However, such an approach has probably underestimated the overall exposure risk as the drugs need to be delivered to the facility, transported internally and then disposed. The objective of this study is to determine whether drug contamination occurs throughout a facility and, simultaneously, to identify those job categories that are potentially exposed. Methods: This was a multi-site study based in Vancouver, British Columbia. Interviews were conducted to determine the departments where the drugs travel. Subsequent site observations were performed to ascertain those surfaces which frequently came into contact with antineoplastic drugs and to determine the job categories which are likely to contact these surfaces. Wipe samples were collected to quantify surface contamination. Results: Surface contamination was found in all six stages of the hospital medication system. Job categories consistently found to be at risk of exposure were nurses, pharmacists, pharmacy technicians, and pharmacy receivers. Up to 11 job categories per site may be at risk of exposure at some point during the hospital medication system. Conclusion: We found drug contamination on select surfaces at every stage of the medication system, which indicates the existence of an exposure potential throughout the facility. Our results suggest that a broader range of workers are potentially exposed than has been previously examined. These results will allow us to develop a more inclusive exposure assessment encompassing all healthcare workers that are at risk throughout the hospital medication system.

System Software Design of Computerized Tomography Radiation Dose Management (컴퓨터 단층촬영 방사선 노출 관리 시스템 소프트웨어 설계)

  • Yang, Yu Mi;Cho, Sang Wook;Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • This paper provides the design of system software for the management of radiation dose that is generated by using computerized tomography(CT). Recently, the radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only in nuclear power plant but in medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, now the exposure management of patients have been required. As surgery and inspections using the radiation have increased, this medical radiation exposure is increasing too. But it is a real situation that medical institutions don't know the level of radiation exposure applied to the patient. Therefore, a system for managing the radiation exposure of a patient from the medical institution is required. This paper proposes a design of a software program that manages the radiation exposure of CT which is a typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would be of help to optimize the medical exposure of the patient.

A Study on Quality Control for Medical Image by Using Deviation Index of Digital Radiology (디지털 방사선 영상의 편차지수를 이용한 의료영상 품질관리에 관한 연구)

  • Jeong, Hoi-Woun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.115-121
    • /
    • 2020
  • In a digital radiation system using a Flat Panel Detector, we attempted to the quality control of digital radiography system using the Exposure Index and Deviation Index. Calibration was performed with the radiation quality suggested by the International Electrotechnical Commission, and through an experiment using a phantom, appropriate inspection radiation conditions applicable to medical institutions were selected. The study was conducted using the selected radiation conditions. Through those chest posterior anterior image, information such as examination conditions and exposure index was obtained. The deviation index was derived by analyzing the exposure index based on the target exposure index calculated by the phantom study. As for the analyzed exposure index, 97.1% was distributed within the range of ± 2.0 based on the deviation index. Quality control of medical images should be performed through management of inspection conditions through exposure index and deviation index and management of medical images.

The Results of the Application of a Real-time Chemical Exposure Monitoring System in a Workplace (스마트 센서 세트를 활용한 화학물질 상시모니터링 시스템의 작업현장 적용 결과)

  • Wook Kim;Jangjin Ryoo;Jongdeok Jung;Gwihyun Park;Giyeong Kim;Jinju Kang;Kihyo Jung;Seunghon Ham
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.215-229
    • /
    • 2023
  • Objectives: To validate the effectiveness of a real-time chemical exposure monitoring system developed by KOSHA (Korea Occupational Safety and Health Agency), we applied the system to a workplace in the electronics industry for 153 days. Methods: The monitoring system consisted of a PID chemical sensor, a LTE communication equipment, and a web-based platform. To monitor chemical exposure, four sets of sensors were placed in two manufacturing tasks - inspection and jig cleaning - which used TCE as a degreasing agent. We reviewed previous reports of work environment measurements and conducted a new work environment measurement on one day during the period. The PID sensor systems detected the chemical exposure levels in the workplace every second and transmitted it to the platform. Daily average and maximum chemical exposure levels were also recorded. Results: We compared the results from the real-time monitoring system and the work environment measurement by traditional methods. Generally, the data from the real-time monitoring system showed a higher level because the sensors were closer to the chemical source. We found that 28% of jig cleaning task data exceeded the STEL. Peak exposure levels of sensor data were useful for understanding the characteristics of the task's chemical use. Limitations and implications were reviewed for the adoption of the system for preventing poisoning caused by chemical substances. Conclusions: We found that the real-time chemical exposure monitoring system was an efficient tool for preventing occupational diseases caused by chemical exposure, such as acute poisoning. Further research is needed to improve the reliability and applicability of the system. We also believe that forming a social consensus around the system is essential.

Acute Radiation Syndrome in an Irradiated Minipig Model for Patients with Radiation Exposure

  • Jang, Hyosun;Kim, Joong-sun;Shim, Sehwan;Jang, Won-seok;Lee, Sun-Joo;Myung, Jae Kyung;Lee, Seung-Sook;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.146-153
    • /
    • 2017
  • Background: Acute radiation syndrome (ARS) primarily refers to damage to the hematopoietic system, myeloid system, and gastrointestinal (GI) system caused by radiation exposure. Such damage progresses to become life-threatening. In particular, as the syndrome develops very rapidly-within several hours from radiation exposure-prompt and accurate diagnosis and treatment are needed, as is further research into appropriate diagnostic and treatment modalities. Materials and Methods: Minipigs, which display human-like properties, underwent whole-body irradiation at 2 or 4 Gy (doses causing hematopoietic ARS) or at higher doses of 7 or 12 Gy. Changes in the blood cells and clinical symptoms were analyzed and we performed a necropsy when the animals succumbed to ARS. Results and Discussion: The minipig irradiated with 2 Gy showed a decrease in white blood cells, including neutrophils, lymphocytes, and platelets in the early stages. However, the blood cell counts gradually increased and returned to normal values. The minipig irradiated with 4 Gy succumbed due to hematopoietic ARS. In contrast, the minipigs irradiated with 7 or 12 Gy exhibited clinical symptoms of combined GI damage and hematopoietic syndrome. Moreover, a characteristic pattern of platelet changes was observed in the 7 and 12 Gy irradiated minipigs. Conclusion: The changes in the platelet count caused by radiation exposure observed in minipigs, which are hematologically and pathohistologically similar to humans, suggest that they can be used as a novel diagnostic criterion.

An Automatic Visual Alignment System for an Exposure System (노광시스템을 위한 자동 정렬 비젼시스템)

  • Cho, Tai-Hoon;Seo, Jae-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.43-48
    • /
    • 2007
  • For exposure systems, very accurate alignment between the mask and the substrate is indispensable. In this paper, an automatic alignment system using machine vision for exposure systems is described. Machine vision algorithms are described in detail including extraction of an alignment mark's center position and camera calibration. Methods for extracting parameters for alignment are also presented with some compensation techniques to reduce alignment time. Our alignment system was implemented with a vision system and motion control stages. The performance of the alignment system has been extensively tested with satisfactory results. The performance evaluation shows alignment accuracy of lum within total alignment time of about $2{\sim}3$ seconds including stage moving time.

  • PDF