• 제목/요약/키워드: Exposure Scenario

검색결과 143건 처리시간 0.028초

THE DEVELOPMENT OF A VIRTUAL REALITY THERAPY SYSTEM FOR THE TREATMENT OF ACROPHOBIA AND THERAPEUTIC

  • Kim, Sun I.;Jeonghun Ku;Dongpyo Jang;Lee, Jaemin;Kim, Hun;Myoungjin Oh;Park, Younghee
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.231-236
    • /
    • 2001
  • Virtual Reality (VR) is a new technology that enables humans to communicate with a computer, It allows the user to see, hear, fuel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia. Acrophobia is a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting impairment in functioning. Conventional virtual reality systems for the treatment of acrophobia have limitations, such as overly expensive devices or somewhat unrealistic graphic scenes. The goal of this study is to develop an inexpensive and more realistic virtual environment in which to perform an exposure therapy fur acrophobia. It runs on a personal computer, and a virtual scene ova bunge-jump tower in the middle of a large city. The virtual scenario includes an open tin surrounded by props beside a tower, which allows the patient to feel a sense of heights. The effectiveness of the VR environment was evaluated through the clinical treatment of a subject who was suffering from the fear of heights. Based on pre- and post- questionnaires and subjective comments from the subject. This virtual reality environment proved to be an effective and realistic tool fur the treatment of acrophobia.

  • PDF

수질관련 질환에 의한 한국인의 질병부담 (Burden of Disease Attributable to Water-related Diseases in Korea)

  • 황선빈;김형수;윤석준;이건세;김은정;조민우;오인환;김현진
    • 한국환경보건학회지
    • /
    • 제37권4호
    • /
    • pp.250-257
    • /
    • 2011
  • Objectives: This study was aimed at re-assessing the environmental burden of disease attributable to waterrelated diseases using available local data from Korea. Methods: The general methods and the operational definitions for water, sanitation and hygiene applied to the study were based on an environmental burden of disease study conducted by WHO. Eleven water-related diseases were selected. The attributable fraction for diarrhea was calculated by assessing local exposure levels to drinking water, sanitation and hygiene according the scenario-based approach. The attributable fractions for the other ten diseases were derived from the results of the environmental burden of diseases study. The attributable DALYs were measured by using the attributable fractions and local health statistics. Results: The total environmental burden of disease attributable to water, sanitation and hygiene for Korea was 0.9210 DALY per 1000 capitals. Of the total burden of disease, the attributable burden of diarrhea was 0.8863 (96.1%), the attributable burden of malaria and malnutrition was 0.0236 and 0.0063 DALY per 1000 capitals, respectively. There was little burden of disease measured for other diseases. Conclusions: This study is meaningful in re-assessing the environmental burden of disease using available local exposure data and health statistics. Quantitative analysis of the environmental risk factors and a health impact assessment would be helpful to prioritize health policies or interventions in the future.

Ammonium nitrate의 유해성과 작업환경 관리 (Hazards and Workplace Management of Ammonium nitrate)

  • 김현영;황양인;국원근
    • 한국산업보건학회지
    • /
    • 제22권3호
    • /
    • pp.235-243
    • /
    • 2012
  • Objectives: The purpose of this study is the work environment management method through risk assessment and investigation of the work place that deals with Ammonium nitrate, based on information in and outside the country. Methods: This study suggests method of work environment management through risk assessment and investigation of the work place that deals with Ammonium nitrate, and finds out cases of Ammonium nitrate causing hazard, danger and health risk, based on literature investigation. Results: Rats exposed repeatedly to $LD_{50}$ 2,217 mg/kg(rat), $LC_{50}$ 88.8 mg/L(rat, skin) which cause high level of skin irritation, reported 1 $mg/m^3$ of NOAEL, while LOAEL was less than 100 mg/kg for the rats orally administered with the $LD_{50}$ 2,217 mg/kg(rat), $LC_{50}$ 88.8 mg/L(rat, skin), for 13 weeks. Domestically 31,640 ton/y of ammonium nitrate has been used in 22 workplace and the result of workplace assessment was 0.0171-0.9983 $mg/m^3$. ADD was 8.77-59.63 ${\mu}g/kg-day$ according to the exposure scenario. In other words the result of the risk assessment goes beyond the 'standard 1'. Conclusions: Ammonium nitrate creates a high level of irritation and toxicity when coming in breathe it or contact with skin, and is classified as category3 of GHS and specific target organ toxicant (irritating respiratory system). Exposure level at work places needs to be maintained under $1mg/m^3$, to prevent workers from being damaged.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

RESRAD-RECYCLE 전산코드를 활용한 금속폐기물 내 우라늄 자체처분 허용농도 예비 평가 (Preliminary Evaluation of Clearance Level of Uranium in Metal Waste Using the RESRAD-RECYCLE Code)

  • 이선우;홍정환;박정석;김광표
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.457-469
    • /
    • 2023
  • The clearance level by nuclide is announced by the Nuclear Safety and Security Commission. However, the clearance level of uranium existing in nature has not been announced, and research is needed. Therefore, the purpose of this study was to evaluate the clearance level of uranium nuclides appropriate to domestic conditions preliminary. For this purpose, this study selected major processes for recycling metal wastes and analyzed the exposure scenarios and major input factors by investigating the characteristics of each process. Then, the radiation dose to the general public and workers was evaluated according to the selected scenarios. Finally, the results of the radiation dose per unit radioactivity for each scenario were analyzed to derive the clearance level of uranium in metal waste. The results of the radiation dose assessment for both the general public and workers per unit radioactivity of uranium isotopes were shown to meet the allowable dose (individual dose of 10 µSv y-1 and collective dose of 1 Man-Sv y-1) regulated by the Nuclear Safety and Security Commission. The most conservative scenarios for volumetric and surface contamination were evaluated for the handling of the slag generated after the melting of the metal waste and the direct reuse of the contaminated metal waste into the building without further disposal. For each of these scenarios, the radioactivity concentration by uranium isotope was calculated, and the clearance level of uranium in metal waste was calculated through the radioactivity ratio by enrichment. The results of this study can be used as a basic data for defining the clearance level of uranium-contaminated radioactive waste.

Meat quality and safety issues during high temperatures and cutting-edge technologies to mitigate the scenario

  • AMM Nurul Alam;Eun-Yeong Lee;Md Jakir Hossain;Abdul Samad;So-Hee Kim;Young-Hwa Hwang;Seon-Tea Joo
    • Journal of Animal Science and Technology
    • /
    • 제66권4호
    • /
    • pp.645-662
    • /
    • 2024
  • Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.

기후변화로 인한 작물의 고온 스트레스 전망 (Climate Change-induced High Temperature Stress on Global Crop Production)

  • 이경미;강현석;조천호
    • 대한지리학회지
    • /
    • 제51권5호
    • /
    • pp.633-649
    • /
    • 2016
  • 작물의 생산성은 생식기간 중 고온에 노출되면 감소한다. IPCC 5차 평가보고서는 고온의 빈도가 미래에 계속 증가할 것이며, 이는 세계 식량 공급에 영향을 미칠 것으로 전망하였다. 이 연구에서는 기상청의 Had GEM2-AO(the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2) 기후모델과 FAO/IIASA의 GAEZ(Global Agro-Ecological Zone) 작물모델 자료를 이용하여 전 지구 규모에서 4개의 주요 작물(쌀, 옥수수, 콩, 밀)에 대하여 기후변화로 인한 작물의 고온 스트레스를 평가하였다. 과거기간(1961~1990년)에 비해 미래(2070~2090년)에 생식기간 동안 최고기온은 약 $1.8{\sim}3.5^{\circ}C$ 상승할 것으로 전망되며, RCP2.6 시나리오에 비해 RCP8.5 시나리오에 따른 기온 상승이 더 클 것으로 전망된다. 특히 열 스트레스는 북반구 $30{\sim}50^{\circ}N$에 위치한 작물 생산 지역에 극심한 피해를 발생시킬 것으로 전망된다. RCP8.5 시나리오에 따르면 모든 작물에 대해서 전체 재배지역의 약 20%는 현재에 경험하지 못한 극단적인 고온 스트레스를 경험하게 될 것이며, 특히 북아메리카에서 쌀과 콩의 고온 스트레스 강도가 클 것으로 전망된다. 기후변화를 완화하기 위한 노력 없이 현재 추세대로 온실기체를 계속 배출한다면 온대 및 아열대 지역에서의 농업이 고온에 크게 영향을 받을 것으로 전망되며, 이는 작물의 대부분을 수입에 의존하는 우리나라 식량안보에 큰 위협이 될 수 있다. 그러므로 기후변화에 따른 식량안보에 대하여 지속적인 예측이 수행되어야 하며, 적응 전략 개발 및 적절한 농업 정책 등이 필요하다.

  • PDF

국립공원의 기후변화 취약성 평가 (Evaluation on Climate Change Vulnerability of Korea National Parks)

  • 김종천;김태근
    • 생태와환경
    • /
    • 제49권1호
    • /
    • pp.42-50
    • /
    • 2016
  • 본 연구는 기후변화에 대응하기 위해서 국립공원의 관리방향을 설정하고, 이에 따른 정책을 수립하기 위한 기초 자료를 제공하는 데 목적이 있다. 이를 위해서 국립환경과학원에서 개발한 기후변화 취약성 평가 도구인 LCCGIS 프로그램의 취약성 대용변수 24개를 이용하여 현재와 미래의 국립공원의 기후변화 취약성을 분석하였다. 국립공원의 기후변화 취약성에 대한 현황과 미래전망을 분석하고 평가하기 위하여 기후노출의 대용변수는 기후변화 시나리오 (RCP 8.5)를 적용하여 $1km{\times}1km$ 격자 단위의 GIS 공간주제도를 제작하여 값을 추출하고, 민감도 및 적응 능력의 대용변수의 값은 국립공원 기본 통계값을 이용하여 추출하였다. 3개의 취약성 평가항목의 값은 현재 (2010년대)와 미래 (2050년대)에 대해서 추출하였으며, 미래 예측 시나리오가 없는 민감도 및 적응 능력과 관련된 대용변수는 현재 상태가 지속된다는 가정 아래 현재의 값을 미래에도 동일하게 적용하였다. 현재 (2010년대) 기후노출은 설악산, 오대산, 지리산, 치악산국립공원이 상대적으로 크고, 미래 (2050년대)에는 지리산, 오대산, 설악산, 한려해상이 클 것으로 예상되었다. 특히, 폭염의 변화가 가장 큰 공원은 월출산국립공원이고 가뭄이 크게 변하는 공원은 계룡산국립공원이며, 월악산국립공원이 폭우의 변화가 가장 클 것으로 나타났다. 국립공원 기후변화 민감도는 지리산국립공원이 가장 민감하고 적응 능력도 가장 높게 평가되었다. 민감도가 가장 낮은 곳은 가야산국립공원이고, 적응 능력은 치악산국립공원이 가장 낮았다. 기후변화 취약성은 설악산, 오대산, 치악산, 덕유산, 한려해상국립공원이 현재시기에 높게 평가되었고, 미래 취약성의 변화가 큰 공원은 지리산, 월악산, 치악산, 소백산국립공원 순으로 전망되었다. 전반적으로, 국립공원의 기후변화 취약성을 평가하는 항목인 기후노출, 민감도, 그리고 적응 능력은 국립공원의 지역적인 기후환경에 따라서 상대적으로 차이가 나타나기 때문에 전 공원을 대상으로 획일적인 적응대책을 수립하기보다는 국립공원의 지역적인 기후환경 특성을 반영한 적응대책 마련이 필요할 것이다. 국립공원을 대상으로 기후노출, 민감도 및 적응 능력의 대용변수를 이용하여 기후변화 취약성을 평가한 본 연구의 결과는 국립공원의 지역적인 기후환경 특성을 고려한 기후변화 적응대책을 수립하는 데 기초자료로서 활용될 것으로 기대된다. 하지만 국립공원의 기후변화 취약성 평가와 관련된 연구가 거의 없는 실정에서 LCCGIS프로그램 상에서 제시되는 대용변수만을 사용하여 분석하였기 때문에, 국립공원의 전반적인 환경을 제대로 반영하지 못할 수 있다. 향후 연구에서는 국립공원의 기후변화 취약성을 평가하기 위하여 보다 적합한 대용변수의 객관적인 검토와 함께 가중치 설정에 대한 연구가 진행될 필요가 있다.

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.