• Title/Summary/Keyword: Exposure Measure

Search Result 568, Processing Time 0.024 seconds

A Comparison of Noise Level by Noise Measuring Methods (소음측정방법에 따른 평가소음도 비교)

  • Shim, Chur Goo;Roh, Jae hoon;Park, Jung Gyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.128-136
    • /
    • 1995
  • The purpose of this study is to evaluate the difference of noise level according to noise measuring methods in the noisy working environments. Sound pressure level(SPL), equivalence sound level(Leq) and personal noise exposure dose(Dose) in the fifty-nine unit workplaces of the twenty-eight industries were measured and relating factors which were affected noise level were investigated. The results were as follows ; 1. The noise levels were $88.70{\pm}5.68dB(A)$ by SPL, $89.07{\pm}5.41dB(A)$ by Leq and $89.07{\pm}5.69$ by Dose. The differences of noise levels by three measuring methods were statistically significant(P<0.001) by repeated measure ANOV A. 2. Comparing with noise levels by general classes of noise exposure, noise levels of continuous noise were $89.14{\pm}5.19dB(A)$ by SPL, $89.45{\pm}4.65dB(A)$ by Leq and $90.04{\pm}5.09$ by Dose. Noise levels of intermittent noise were $87.90{\pm}6.52dB(A)$ by SPL, $88.40{\pm}6.63dB(A)$ by Leq and $90.10{\pm}6.80$ by Dose. The differences noise level of noise measuring methods by general classese of noise exposure were statistically not significant by repeated measure ANOV A. 3. Interaction between general classese of noise exposure and noise measuring methods for noise level was not statistically significant by repeated measure ANOVA. And the noise level by noise measuring methods were statistically significant by repeated measure ANOV A(P<.001) 4. Comparing with noise levels by unit workplace size, noise levels of large unit workplace were $90.73{\pm}5.87dB(A)$ by SPL, $91.32{\pm}5.50dB(A)$ by Leq and $91.82{\pm}6.06$ by Dose and noise levels of middle unit workplace were $88.31{\pm}5.26dB(A)$ by SPL, $88.41{\pm}4.83dB(A)$ by Leq and $89.69{\pm}5.05$ by Dose. And noise levels of small unit workplace were $94.89{\pm}4.10dB(A)$ by SPL, $85.35{\pm}4.11dB(A)$ by Leq and $86.87{\pm}4.98$ by Dose. The noise level differences of noise measuring methods by unit workplace size were statistically significant by repeated measure ANOV A(P<.05). 5. The noise level by noise measuring methods were statistically significant by repeated measure ANOV A(P<.001). But Interaction between workplace size and noise level measuring methods for noise level was not statistically significant by repeated measure ANOVA. According to the above results, there was a difference of the noise level among the three measuring methods. Therefore we must use the personal noise exposure dose using by noise dose meter, possible, to prvent occupational hearing loss in noisy working environment.

  • PDF

Intent to Use a Smartphone Application for Radiation Monitoring in Correlation with Anxiety about Exposure to Radiation, Recognition of Risks, and Attitudes toward the Use of Radiation

  • Han, Eunkyoung;Rott, Carsten;Hong, Seung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.205-211
    • /
    • 2017
  • Background: Radiation is used in a variety of areas, but it also poses potential risks. Although radiation is often used with great effectiveness in many applications, people perceive potential risks associated with radiation and feel anxious about the possibility of radiation exposure. Various methods of measuring radiation doses have been developed, but there is no way for the general public to measure their doses with ease. Currently, many people use smartphones, which provide information about the location of an individual phone through network connections. If a smartphone application could be developed for measuring radiation dosage, it would be a very effective way to measure individuals' radiation doses. Thus, we conducted a survey study to assess the social acceptance of such a technology by the general public and their intent to use that technology to measure radiation doses, as well as to investigate whether such an intention is correlated with anxiety and attitudes toward the use of radiation. Materials and Methods: A nationwide online survey was conducted among 355 Koreans who were 20 years old or older. Results and Discussion: Significant differences were found between the genders in attitudes, perceptions of radiation risk, and fears of exposure to radiation. However, a significant difference according to age was observed only in the intent to use a smartphone dose measurement application. Attitudes towards the use of radiation exerted a negative effect on radiation risk perception and exposure anxiety, whereas attitudes towards the use of radiation, risk perception, and anxiety about exposure were found to have a positive impact on the intent to use a smartphone application for dose measurements. Conclusion: A survey-based study was conducted to investigate how the general public perceives radiation and to examine the acceptability of a smartphone application as a personal dose monitoring device. If such an application is developed, it could be used not only to monitor an individual's dose, but also to contribute to radiation safety information infrastructure by mapping radiation in different areas, which could be utilized as a useful basis for radiation research.

Modified Exposure Fusion with Improved Exposure Adjustment Using Histogram and Gamma Correction (히스토그램과 감마보정 기반의 노출 조정을 이용한 다중 노출 영상 합성 기법)

  • Park, Imjae;Park, Deajun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.327-338
    • /
    • 2017
  • Exposure fusion is a typical image fusion technique to generate a high dynamic range image by combining two or more different exposure images. In this paper, we propose block-based exposure adjustment considering unique characteristics of human visual system and improved saturation measure to get weight map. Proposed exposure adjustment artificially corrects intensity values of each input images considering human visual system, efficiently preserving details in the result image of exposure fusion. The improved saturation measure is used to make a weight map that effectively reflects the saturation region in the input images. We show the superiority of the proposed algorithm through subjective image quality, MEF-SSIM, and execution time comparison with the conventional exposure fusion algorithm.

Inhalation Exposure to Chloroform Released from Household Uses of Chlorinated Tap Water (가정에서 수돗물 사용 중에 방출되는 chloroform에 대한 흡입노출)

  • Shin, Hye-sook;Kim, He-kap
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2004
  • Exposure to volatile disinfection by-products (DBPs) such as chloroform included in chlorinated tap water can occur during household activities via inhalation as well as ingestion and dermal absorption. This study was conducted to examine the significance of inhalation route of exposure since humans are unintentionally exposed to volatile DBPs while staying home. Two sets of experiments were carried out in an apartment to measure: 1) the variation of chloroform concentrations in the living room air following kitchen activities (cooking and dish-washing); and 2) the variation of chloroform concentrations in the bathroom and living room following showering. Cooking, dish-washing, and showering all contributed to the elevation of household chloroform levels. Even a few minutes of natural ventilation resulted in the reduction of the chloroform levels to the background. Estimates of daily chloroform doses and lifetime cancer risks suggested that inhalation of household air during staying home be a major route of exposure to chloroform and that ingestion be a minor one in Korean people. It is also suggested that ventilation be a simple and important measure of mitigating human exposure to volatile DBPs indoors.

Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter (방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가)

  • Kang, In-Seog;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.864-870
    • /
    • 2014
  • To propose a basis for the selection of personal dosimeters to measure radiation dose administration of radiation workers as a way to evaluate the usefulness dosimeter. For the dosimetry of the radiation workers 2012, during 1 year, 30 were radiation workers to measure personal dose. By personal exposure is measured cumulative dose, is investigated the performance of the TLD, PLD, OSLD. And comparing the measured value of each dosimeter dose and analyzed. Medical institutions, inspection work and quarterly confirmed the cumulative exposure dose of radiation workers. Using DAP and Ion-Chamber, to measure to compare TLD, PLD, OSLD dosimeter performance. A comparison of the directly through the X-ray dosimeter and The absolute value of the Ion-Chamber, OSLD more similar than in the TLD and PLD showed the dose values so the excellent ability to measure the results. Also in radiation generating area dose of radiation workers is higher than that in OSLD. Consequently, in terms of the individual exposure management OSLD is appropriated and beneficial than others.

Review of Various Quantitative Methods to Measure Secondhand Smoke (간접흡연의 정량적 노출측정 방법의 고찰)

  • Lim, Soo-Gil;Kim, Joung-Yoon;Lim, Wan-Ryung;Sohn, Hong-Ji;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.100-115
    • /
    • 2009
  • Secondhand smoke (SHS) is one of major public health threats. Since secondhand smoke is complex mixture of toxic chemicals, there has been no standardized method to measure SHS quantitatively. The purpose of this manuscript was to review various quantitative methods to measure SHS. There are two different methods: air monitoring and biological monitoring. Air monitoring methods include exhaled carbon monoxide level, ambient fine particulates, nicotine and 3-ethenylpyridine. Measurement of fine particulates has been utilized due to presence of real-time monitor, while fine particulates can have multiple indoor sources other than SHS. Ambient nicotine and 3-EP are more specific to SHS, although there is no real-time monitor for these chemicals. Biological monitoring methods include nicotine in hair, cotinine in urine, NNK in urine and DNA adducts. Nicotine in hair can provide chronic internal dose, while cotinine in urine can provide acute dose. Since biological monitoring can provide total internal dose, identification of specific exposure source may be difficult. NNK in urine can indicate carcinogenicity of the SHS exposure. DNA adducts can provide overall cancer causing exposure, but not specific to SHS. While there are many quantitative methods to measure SHS, selection of appropriate method should be based on purposes of assessment. Application of accurate and appropriate exposure assessment method is important for understanding health effects and establishing appropriate control measures.

The correlation among the oral & facial states and the gummy smile in female college students (일부 여대생의 구강 및 안모상태와 치은노출(Gummy smile)과의 상관성)

  • So, Mi-Hyun
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.2
    • /
    • pp.345-353
    • /
    • 2012
  • Objectives : The author has studied about correlation of gingival exposure upon smiling and oral facial status that reduce facial aesthetic. Methods : The subjects in this study are 91 female vulunteers who were in aged $21.4{\pm}1.89$ in Suwon. Objectives should be normal oral and facial status without the prosthodontic, orthodontic appliance or conqenital missing tooth, and agree to be examined the oral status and impression taking. 1.Measure the length of gingival exposure upon smiling. 2.Measure of the size on central incisor. 3.Measure of Facial. SPSS(SPSS 10.0 for windows, SPSS Inc, Chicago, USA) was utilized for calculating the correlation coefficient between gingival exposure upon smiling and facial status. Regression analysis was calculated in order to predict the R square for gingival exposure upon smiling. Results : 1.Correlation coefficient between the gingival exposure and length of maxillary central incisor was calculated as reversed correlation(r=-.302, p<0.01), and between the gingival exposure and the ratio of the length of central incisor/width of central incisor was revealed as reversed correlation(r=-.250, p<0.05) on smiling. 2.There was correlation between the gingival exposure and the facial height(r=.351, p<0.01), the lower facial height(r=.454, p<0.01) and the upper lip height(r=.274, p<0.01) upon smiling. 3.There was correlation between the gingival exposure and the ratio of the facial height/facial width(r=.358, p<0.05), the ratio of the upper facial height/facial width(r=.214, p<0.05), and the ratio of the lower facial height/facial height(r=.383, p<0.01) upon smiling. 4.The equation of the regression analysis for gingival exposure upon smiling could be estimated as gingival exposure upon smiling=-5.139+.279${\times}$lower facial height-.615${\times}$maxillary central incisal length-.05${\times}$nasolabial angle. Conclusions : Considering these results, it recommended that treatment planning should be designed in consideration of such factors as the length of maxillary central incisor, facial height, upper lip height and lower facial height, in order to promote the easthetic problems of face on smiling.

Durability Characteristics of RC containing Different Chloride Contents based on Long Term Exposure Test and Accelerated Test (장기폭로시험과 촉진시험에 근거한 염화물 함유량에 따른 철근콘크리트의 내구특성)

  • 권성준;송하원;신수철;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.759-762
    • /
    • 1999
  • The concrete structures possessing good structural integrity can face durability problems due to deteriorations of concrete structures under various environmental conditions. The durability problems weaken the structural integrity in the long run. Especially, the excessive use of sea sand causes serious reinforcement corrosion and carbonation in concrete structures. An accelerated test is often used to predict deterioration as a qualitative measure, but without long term exposure test results or understanding of the relationship between the accelerated test and the long term exposure test, the accelerated test result alone can not be used effectively as a quantitative measure. In this paper, a methodology is proposed to predict the long term deteriorations, based on the result of the short-term accelerated test, of concrete containing different contents of chloride ions. Then, the correlation between two results on the steel corrosion ratio and the carbonation depth is analyzed for concrete with different chloride contents.

  • PDF

Ultrafine Particle Toxicities, Current Measurement Techniques and Controls (Ultrafine Particle의 독성, 측정방법 및 관리)

  • Lee, Su-Gil;Kim, Seong-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.203-215
    • /
    • 2010
  • This study is an overview of toxicities and measurement techniques of ultrafine particles (UFPs), and their exposure controls. UFPs are ubiquitous in many working situations. Exposure to UFPs is possibly causing adverse health symptoms including cardio-respiratory disease to humans. In order to measure exposure levels of airborne UFPs, there are current available measurement guidelines, instruments and other techniques (i.e. contour mapping, control banding). However, these risk assessment techniques including measurement techniques, controls and guidelines are dependent on background levels, metrics (e.g. size, mass, number, surface area, composition), environmental conditions and controls. There are no standardized measurement methods available and no generic and specific occupational exposure standards for UFPs. It is thought that there needs to be more effort to develop Regulations and Exposure Standards for generic UFPs should be based on more exposure data, health surveys, toxicological data and epidemiological data. A carefully considered hierarchy of controls can also reduce the maximum amount of airborne UFPs being emitted from diverse sources in industries.