• 제목/요약/키워드: Exposed concrete

검색결과 919건 처리시간 0.029초

지연제 살포량과 물씻기 시간이 골재노출 콘크리트의 표면성상에 미치는 영향 (Surface Properties of Exposed-Aggregate Concrete Depending on Retarder and Water Jet Washing Timing)

  • 박준희;한천구
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.169-175
    • /
    • 2015
  • 본 연구는 콘크리트 마감재로써 골재노출 콘크리트를 개발하기 위한 일련의 실험이다. 실험변수로는 고강도 및 일반강도의 물-시멘트비별 당류계 지연제의 살포량 및 세척시기 변화가 물씻기 공법을 이용한 골재노출 콘크리트의 품질에 미치는 영향을 분석하였다. 그 결과, 물-시멘트비 25%는 세척시점 0.75일, 물-시멘트비 35%와 55%는 1일, 65%는 1.5일에 당류계 지연제를 $24m{\ell}/m^2$ 살포하였을 때 가장 효과적이며 양호한 골재 노출의 표면이 연출되는 것을 확인할 수 있었다.

Recovery of mortar-aggregate interface of fire-damaged concrete after post-fire curing

  • Li, Lang;Zhang, Hong;Dong, Jiangfeng;Zhang, Hongen;Jia, Pu;Wang, Qingyuan;Liu, Yongjie
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.249-258
    • /
    • 2019
  • In order to investigate the strength recovery of fire-damaged concrete after post-fire curing, concrete specimens were heating at $2^{\circ}C/min$ or $5^{\circ}C/min$ to 400, 600 and $800^{\circ}C$, and these exposed specimens were soaked in the water for 24 hours and following by 29-day post-fire curing. The compressive strength and split tensile strength of the high-temperature-exposed specimens before and after post-fire curing were tested. The proportion of split aggregate in the split surfaces was analyzed to evaluate the mortar-aggregate interfacial strength. After the post-fire curing process, the split tensile strength of specimens exposed to all temperatures was recovered significantly, while the recovery of compressive strength was only obvious within the specimens exposed to $600^{\circ}C$. The tensile strength is more sensitive to the mortar-aggregate interfacial cracks, which caused that the split tensile strength decreased more after high-temperature exposure and recovery more after post-fire curing than the compressive strength. The mortar-aggregate interfacial strength also showed remarkable recovery after post-fire curing, and it contributed to the recovery of split tensile strength.

염해환경에 노출된 매스콘크리트의 시공 (Application of Mass Concrete Exposed to Marine Environment)

  • 김동석;박상준;신홍철;유재강
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.487-490
    • /
    • 2005
  • This study was performed to investigate the effect of ternary blended cement concrete mixed with slag cement and fly ash on the compressive strength, the resistance to chloride ion penetration and reduction of hydration heat. Each performance of ternary blended cement concrete compared with binary blended cement concrete and ordinary portland cement concrete. As a result, it was concluded that ternary blended cement concrete is suitable to mass concrete under marine environment.

  • PDF

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Safety Analysis of Concrete Treatment Workers in Decommissioning of Nuclear Power Plant

  • Hwang, Young Hwan;Kim, Si Young;Lee, Mi-Hyun;Hong, Sang Beom;Kim, Cheon-Woo
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.349-356
    • /
    • 2022
  • Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers' radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers' radiation exposure, and improved the treatment process's efficiency. The shielding package's effect on workers' radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.

Multi-dimensional models for predicting the chloride diffusion in concrete exposed to marine tidal zone: Methodology, Numerical Simulation and Application

  • Yang Ding;Zi-Xi He;Shuang-Xi Zhou
    • Computers and Concrete
    • /
    • 제34권2호
    • /
    • pp.169-178
    • /
    • 2024
  • To circumvent the constraints of time-consuming experimental methods, numerical simulation can be one of the most effective approaches to investigating chloride diffusion behaviors in concrete. However, except for the effect of the external environments, the transport direction of the chloride cannot be neglected when the concrete is exposed to the marine tidal zone, especially in certain areas of concrete members. In this study, based on Fick's second law, considering the effects of timevarying, chloride binding capacity, concrete stress state, ambient temperature, and relative humidity on chloride diffusion coefficient, the modified one-dimensional, two-dimensional, and three-dimensional novel modified chloride diffusion theoretical models were established through defining the current boundary conditions. The simulated results based on the novel modified multi-dimensional model were compared with the experimental results obtained from some previous pieces of literature. The comparing results showed that the modified multi-dimensional model was well-fitted with experimental data, confirming the high accuracy of the novel modified model. The experimental results in literature showed that the chloride diffusion in the corner area of the concrete structure cannot be simulated by a simple one-dimensional diffusion model, where it is necessary to select a suitable multi-dimensional chloride diffusion model for simulation calculation. Therefore, the novel modified multi-dimensional model established in this study has a stronger applicability for practical engineering.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

노출콘크리트 마감공법의 시공 프로세스 분석을 통한 설계 시공관리 방안 (The Design and Construction Management of Exposed Concrete Finish Work through the Construction Process Analysis)

  • 송영웅;최윤기
    • 한국건설관리학회논문집
    • /
    • 제6권6호
    • /
    • pp.160-170
    • /
    • 2005
  • 노출 콘크리트 마감공법은 건축설계자의 입면 개념에 따라 일반 및 제물치장 콘크리트 마감공법과 더불어 다양한 마감품질과 표면형태를 나타내며 최근 적용사례가 꾸준히 증가하고 있는 추세이다. 노출 콘크리트 마감공법은 설계 및 시공수준, 마감면의 품질 및 평활도, 색상 및 질감에 따라 타 콘크리트 마감공법보다 공사비 투입이 증가되고 체계적인 설계 및 시공관리가 요구됨에도 불구하고 노출 콘크리트 마감공법에 대한 정의가 불명확하고 설계, 시공, 유지관리 단계별 관리 방안이 구체적으로 제시되지 않아 원가상승, 시공품질 저하, 시공성 저하 등의 문제가 유발되고 있다. 본 연구에서는 노출 콘크리트 마감공법의 체계적인 관리방안 제시를 위하여 국내의 불명확한 노출 콘크리트 마감공법의 정의를 문헌조사 및 사례조사를 통하여 명확하게 제시하고, 노출 콘크리트 마감공법의 색채균일성, 균열발생 억제, 콘크리트 충전성확보 등 노출콘크리트 마감공법의 요구사항과 결함유형을 분석하였다. 이를 바탕으로 노출 콘크리트 마감공법의 시공프로세스를 타 콘크리트 마감공법과 비교 분석하였으며, 노출 콘크리트 마감공법의 설계단계, 시공계획 및 관리단계, 유지 보수 단계별 관리방안을 제시하였다.

화재에 노출된 철근콘크리트 기둥의 수치해석적 열전달 모델 (Numerical Modeling of Heat Transfer in Reinforced Concrete Columns Exposed to Fire)

  • 이차돈;신영수;이승환;이창은
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.871-878
    • /
    • 2005
  • 화재에 노출된 철근콘크리트 기둥은 기둥을 구성하는 재료물성의 변화와 함께 기둥의 구조적 성능에도 결과적으로 열화현상을 나타내게 된다. 기둥의 구조적 성능의 열화정도는 화재동안 기둥단면에 전달된 열의 양과 관련이 있다. 이를 예측하기 위한 합리적인 열 전달 모델은 기둥이 가열을 받는 동안 전달된 열 정도에 따라 변하는 콘크리트의 전도율 및 열용량, 그리고 단면 내 잉여수 증발에 대한 적절한 고려를 하여야 한다. 본 연구에서 제안한 모델은 양해법 유한차분법에 근거하여 개발되었으며 기존에 제안된 모델들에 비하여 이들 모든 변수들의 영향을 적절하게 고려하고 있다. 본 연구에서 개발된 모델은 기존 화해 실험에 의한 기둥 단면 내 온도를 적절하게 예측하였다.