• Title/Summary/Keyword: Exponentially Weighted Moving Average

Search Result 73, Processing Time 0.042 seconds

Exponentially Weighted Moving Average Chart for High-Yield Processes

  • Kotani, Takayuki;Kusukawa, Etsuko;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 2005
  • Borror et al. discussed the EWMA(Exponentially Weighted Moving Average) chart to monitor the count of defects which follows the Poisson distribution, referred to the $EWMA_c$ chart, as an alternative Shewhart c chart. In the $EWMA_c$ chart, the Markov chain approach is used to calculate the ARL (Average Run Length). On the other hand, in order to monitor the process fraction defectives P in high-yield processes, Xie et al. presented the CCC(Cumulative Count of Conforming)-r chart of which quality characteristic is the cumulative count of conforming item inspected until observing $r({\geq}2)$ nonconforming items. Furthermore, Ohta and Kusukawa presented the $CS(Confirmation Sample)_{CCC-r}$ chart as an alternative of the CCC-r chart. As a more superior chart in high-yield processes, in this paper we present an $EWMA_{CCC-r}$ chart to detect more sensitively small or moderate shifts in P than the $CS_{CCC-r}$ chart. The proposed $EWMA_{CCC-r}$ chart can be constructed by applying the designing method of the $EWMA_C$ chart to the CCC-r chart. ANOS(Average Number of Observations to Signal) of the proposed chart is compared with that of the $CS_{CCC-r}$ chart through computer simulation. It is demonstrated from numerical examples that the performance of proposed chart is more superior to the $CS_{CCC-r}$ chart.

A Synthetic Exponentially Weighted Moving-average Chart for High-yield Processes

  • Kusukawa, Etsuko;Kotani, Takayuki;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • As charts to monitor the process fraction defectives, P, in the high-yield processes, Mishima et al. (2002) discussed a synthetic chart, the Synthetic CS chart, which integrates the CS (Confirmation Sample)$_{CCC(\text{Cumulative Count of Conforming})-r}$ chart and the CCC-r chart. The Synthetic CS chart is designed to monitor quality characteristics in real-time. Recently, Kotani et al. (2005) presented the EWMA (Exponentially Weighted Moving-Average)$_{CCC-r}$ chart, which considers combining the quality characteristics monitored in the past with one monitored in real-time. In this paper, we present an alternative chart that is more superior to the $EWMA_{CCC-r}$ chart. It is an integration of the $EWMA_{CCC-r}$ chart and the CCC-r chart. In using the proposed chart, the quality characteristic is initially judged as either the in-control state or the out-of-control state, using the lower and upper control limits of the $EWMA_{CCC-r}$ chart. If the process is not judged as the in-control state by the $EWMA_{CCC-r}$ chart, the process is successively judged, using the $EWMA_{CCC-r}$ chart. We compare the ANOS (Average Number of Observations to Signal) of the proposed chart with those of the $EWMA_{CCC-r}$ chart and the Synthetic CS chart. From the numerical experiments, with the small size of inspection items, the proposed chart is the most sensitive to detect especially the small shifts in P among other charts.

Percentile-based design of exponentially weighted moving average charts (지수가중이동평균 관리도의 백분위수 기반 설계)

  • Jiyun Ku;Jaeheon Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.177-189
    • /
    • 2024
  • The run length is defined as the number of samples or subgroups taken before the control chart statistic exceeds the control limits. Because the distribution of run length is typically asymmetric and has a large variability, it may not be appropriate to use ARL (average run length) alone to design control charts and evaluate performance. In this paper, we introduce the concept of percentile (PL)-based design of control charts, and propose the procedure for PL-based design of EWMA (exponentially weighted moving average) charts. For the PL-based design of EWMA, we present a fitted function for the control chart coefficient, given specific percentile parameters. Additionally, we perform simulations to compare the proposed design with the ARL-based design. The simulation results show that the proposed design yields improvements in monitoring in-control processes while maintaining the ability to detect out-of-control performance.

A threshold-asymmetric realized volatility for high frequency financial time series (비대칭형 분계점 실현변동성의 제안 및 응용)

  • Kim, J.Y.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.205-216
    • /
    • 2018
  • This paper is concerned with volatility computations for high frequency time series. A threshold-asymmetric realized volatility (T-RV) is suggested to capture a leverage effect. The T-RV is compared with various conventional volatility computations including standard realized volatility, GARCH-type volatilities, historical volatility and exponentially weighted moving average volatility. High frequency KOSPI data are analyzed for illustration.

SPC 기법에 의한 밀링공구의 파손분석 및 검색

  • 서석환;전치혁;최용종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.47-51
    • /
    • 1992
  • Automatic detection of tool breakage during NC machining is a key issue not only for improving productivity but to implement the unattended manufacturing system. In this paper, we develop a vibration sensor-based tool breakage detection system for NC milling processes. The system obtains the time-domain vibration signal from the sensor attached on the spindle bracket of our CNC machine and declares tool failures through the on-line monitoring schemes. For on-line detection, our approach is to use the PSC(statistical process control) methods being increasingly used for on-line process control. The main thrust of this paper is to propose and compare the performance of SPC methods including : a) X-bar control scheme, b) S control scheme, c)EWMA (exponentially weighted moving average) scheme, and d) AEWMA (adaptive exponentially weighted moving average) scheme. The performance of the control schemes are compared in terms of the type 1 and 2 error calculated from the experiment data.

[ $\overline{X}$ ] Chart with Geometrically Adjusted Control Limits under Continually Improving Processes (지속적으로 향상되는 공정에서 기하 조정 관리한계를 사용한 $\overline{X}$ 관리도)

  • Ryu, Mi-Jung;Park, Chang-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • An adjusted control limit of the $\overline{X}$ chart is proposed for monitoring the continually improving processes. The continual improvement of the process implies the decrease of the process variance, which is represented by a logistic curve. The process standard deviation is estimated by the exponentially weighted moving average of the sample standard deviations from the past to the current times. The control limits are adjusted by the estimated standard deviation at every sampling time. The performance of the adjusted control limit is compared with that of the standard control limits for various cases of the decreasing speed and size of the variance. The results show that the $\overline{X}$ chart with the adjusted control limits provides better performances for monitoring the small and moderate shifts in continually improving processes.

The ARL of a Selectively Moving Average Control Chart (선택적 이동평균(S-MA) 관리도의 ARL)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • This paper investigates the average run length (ARL) of a selectively moving average (S-MA) control chart. The S-U chart is designed to detect shifts in the process mean. The basic idea of the S-MA chart is to accumulate previous samples selectively in order to increase the sensitivity. The ARL of the S-MA chart was shown to be monotone decreasing with respect to the decision length in a previous research [3]. This paper derives the steady-state ARL in a closed-form and shows that the monotone property is resulted from head-start assumption. The steady-state ARL is shown to be a sum of head-start ARL and an additional term. The statistical design procedure for the S-MA chart is revised according to this result. Sensitivity study shorts that the steady-state ARL performance is still better than the CUSUM chart or the Exponentially Weighted Moving Average (EWMA) chart.

A numerical study on portfolio VaR forecasting based on conditional copula (조건부 코퓰라를 이용한 포트폴리오 위험 예측에 대한 실증 분석)

  • Kim, Eun-Young;Lee, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1065-1074
    • /
    • 2011
  • During several decades, many researchers in the field of finance have studied Value at Risk (VaR) to measure the market risk. VaR indicates the worst loss over a target horizon such that there is a low, pre-specified probability that the actual loss will be larger (Jorion, 2006, p.106). In this paper, we compare conditional copula method with two conventional VaR forecasting methods based on simple moving average and exponentially weighted moving average for measuring the risk of the portfolio, consisting of two domestic stock indices. Through real data analysis, we conclude that the conditional copula method can improve the accuracy of portfolio VaR forecasting in the presence of high kurtosis and strong correlation in the data.

Variable sampling interval control charts for variance-covariance matrix

  • Chang, Duk-Joon;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.741-747
    • /
    • 2009
  • Properties of multivariate Shewhart and EWMA (Exponentially Weighted Moving Average) control charts for monitoring variance-covariance matrix of quality variables are investigated. Performances of the proposed charts are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) charts in terms of average time to signal (ATS) and average number of samples to signal (ANSS). Average number of swiches (ANSW) of the proposed VSI charts are also investigated.

  • PDF