• 제목/요약/키워드: Exponential Smoothing Method

검색결과 114건 처리시간 0.018초

여행수요예측모델 비교분석 (Comparative Analysis of Travel Demand Forecasting Models)

  • 김종호
    • 한국산림과학회지
    • /
    • 제84권2호
    • /
    • pp.121-130
    • /
    • 1995
  • 미국 미시간주의 여행수요(旅行需要)를 예측(豫測)하기 위하여 사용되어진 여러 모델들의 예측정확성(豫測正確性)이 검토되었다. 8가지의 연년(連年)모델들은 2년까지 예측하는데 그리고 9가지의 분기(分期)모델들은 4분기(分期)까지 예측하는데 사용되어 졌다. 연년(連年)모델의 예측정확성(豫測正確性) 평가(評價)에서, 중회귀(重回歸)모델은 1년과 2년을 예측(豫測)하는데 있어 다른 방법들 보다 더 정확(正確)했다. 분기(分期)모델에 있어서는, Winters' exponential smoothing와 Box-Jenkins 방법이 1 분기예측(分期豫測)에 있어 naive 1 s 보다 더 정확(正確)했으나 2분기(分期), 3분기(分期), 4분기(分期)를 예측(豫測)하는데 이 방법(方法)들은 naive 1 s 보다 정확(正確)하지 않았다. 정교(精巧)한 모델들은 분기별(分期別) 예측(豫測)을 하는데 있어서 단순(單純)한 모델들보다 더 정확(正確)하지 않았다. 연년(連年)모델과 분기(分期)모델을 이용한 1년간(年間) 예측비교(豫測比較)에서, 중회귀모형(重回歸模型)은 연간자료(年間資料)보다 분기자료(分期資料)에 적용(適用)할 때 더 좋은 결과(結果)를 얻었으나 그 차이(差異)가 미약(微弱)하며 다른 모델들은 일관성(一貫性)있게 좋은 결과(結果)를 갖지 않으므로 연년(連年)모델보다 分期모델을 사용하도록 강력하게 권장할 수 없다. 연년(連年)모델은 기대(期待)하였던 것처럼 예측기간(豫測期間)이 길어짐으로서 예측정확성(豫測正確性)이 감소(減少)하였으나 분기(分期)모델은 이같은 결과(結果)를 나타내지 않았다.

  • PDF

선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구 (A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction)

  • 송순석;김상현;김희수;전마로
    • 해양환경안전학회지
    • /
    • 제22권1호
    • /
    • pp.129-137
    • /
    • 2016
  • 본 연구의 목적은 가까운 미래의 선박운동정보를 이용하는 피드포워드 제어알고리즘과 FPSO 운동 수치 시뮬레이션 모델을 개발하고 시뮬레이션을 통하여 제어알고리즘의 성능을 검증하는 것이다. 본 논문에서는 조류, 바람, 파력 등의 환경하중에 의하여 발생한 선체운동의 미래 예측치를 활용한 피드포워드 제어력을 추가적으로 가지는 Dynamic Positioning System에 대하여 연구한다. 먼저, 조류력, 풍력 및 파력에 대한 수학모델을 선정하여 환경하중에서의 선체운동을 계산하고, 현재의 선체운동 값과 Brown 지수평활 예측모형을 활용하여 미래 선체운동 값을 예측하였다. 또한 위치 유지와 Heading angle 제어를 위한 제어력을 PID(Proportional-Integral-Derivative)이론을 이용하여 결정한 피드백 제어기와 미래 선체운동 값을 이용하여 결정한 피드포워드 제어기로 구성하였다. 그리고 각 Thruster에 요구되는 추력은 라그랑지승수법을 활용하여 분배하였다. 마지막으로 FPSO(Floating Production Storage and Offloading)의 운동과 Dynamic Positioning System에 대한 시뮬레이션 모델을 구축하여 선박의 위치 및 Heading angle 제어에 관한 시뮬레이션을 수행하여 제안하는 피드백 제어기와 피드포워드 제어기를 동시에 가지는 제어시스템의 성능을 평가하였다. 본 연구의 결과, 피드백 및 피드 포워드 제어기가 적용된 DPS 제어시스템이 기존의 피드백 제어기보다 위치유지 및 헤딩각 유지 능력에서 개선되었고 각 Thruster에 요구되는 평균 제어력 및 최대 제어력의 크기도 감소함을 보였다. 이에 따라 DPS에 요구되는 동력 감축과 Azimuth Thruster 용량의 감소로 인하여 비용 절감의 효과를 기대할 수 있다.

전력수요예측을 위한 기상정보 활용성평가 (Evaluation of weather information for electricity demand forecasting)

  • 신이레;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1601-1607
    • /
    • 2016
  • 오늘날 기상정보는 도로공학, 경제학, 환경공학 등 다양한 분야에 활용되고 있다. 본 연구는 전력수요 예측을 위한 기상정보 활용성을 평가하고자 한다. 기상변수는 기상관측소에서 수집되는 기온, 풍속, 습도, 운량, 기압과 기온, 풍속, 상대습도의 합성지수인 체감온도와 불쾌지수가 고려되었다. 전력수요 예측을 위한 시계열모형으로 슬라이딩 창 방식의 TBATS 삼중지수평활모형이 고려되었다. 월 단위 기상변수와 전력수요 예측오차간 상관분석 결과를 보면 시간대별로 차이를 있으나 기온, 불쾌지수, 체감온도가 전력수요 예측오차와 상관성이 높았다. 이에 과거 3년의 월단위 전력수요 예측오차와 기상변수의 회귀모형식으로 전력수요 예측값의 편의를 보정하였다. 온도, 상대습도, 풍속으로 TBATS 모형의 전력수요 예측값을 보정한 결과 TBATS 모형에 비해 RMSE가 약 6.1% 줄었다.

시간적 계층을 이용한 교통사고 발생건수 예측 (Temporal hierarchical forecasting with an application to traffic accident counts)

  • 전관영;성병찬
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.229-239
    • /
    • 2018
  • 본 논문에서는 시간적 계층 개념을 활용하여 시계열 자료를 예측하는 방법을 소개한다. 횡단적 계층 자료 분석에서와 유사한 방법으로 중복되지 않는 시간적 계층을 시계열 자료에 구조화할 수 있다. 이러한 시간적 계층을 활용하여 조정된 예측은 기존의 계층별 독립적 기저 예측 및 상향식 예측보다 더 정확하고 강건한 예측값을 생성한다. 실증 분석으로서 국내 교통사고 발생건수를 시간적 계층 개념을 활용하여 예측한다. 분석 결과, 조정 예측이 기존의 다른 예측보다 예측 성능면에서 더 우수함을 확인할 수 있다.

IPv6환경에서 DDoS 침입탐지 (DDoS Attack Detection on the IPv6 Environment)

  • 구민정;오창석
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.185-192
    • /
    • 2006
  • 인터넷 웜과 같은 DDoS(Distribute Denial of Service Attack) 공격에 사용되는 네트워크 트래픽과 정상적인 서비스를 위한 네트워크 트래픽을 구분해 내는 것은 쉽지 않다. 정상적인 패킷을 유해 트래픽으로 판단하고 유해 트래픽의 공격자의 의도대로 서비스를 못하는 경우가 발생하므로, 인터넷 웜과 DDoS 공격으로부터 시스템을 보호하기 위해서는 공격 트래픽에 대한 정확한 분석과 탐지가 우선되어야 한다. IPv6 환경으로 전환될 때 발생하는 유해 트래픽에 대한 연구가 미약한 상태이므로, 본 논문에서는 IPv6 환경에서 NETWIB로 공격을 수행하고 공격 트래픽을 모니터링한 후 MIB(Management Information Base) 객체를 지수평활법을 적용하여 예측치 구한 후 임계치를 산정하여 공격을 판별한다.

  • PDF

Forecasting for a Credit Loan from Households in South Korea

  • Jeong, Dong-Bin
    • 산경연구논집
    • /
    • 제8권4호
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose - In this work, we examined the causal relationship between credit loans from households (CLH), loan collateralized with housing (LCH) and an interest of certificate of deposit (ICD) among others in South Korea. Furthermore, the optimal forecasts on the underlying model will be obtained and have the potential for applications in the economic field. Research design, data, and methodology - A total of 31 realizations sampled from the 4th quarter in 2008 to the 4th quarter in 2016 was chosen for this research. To achieve the purpose of this study, a regression model with correlated errors was exploited. Furthermore, goodness-of-fit measures was used as tools of optimal model-construction. Results - We found that by applying the regression model with errors component ARMA(1,5) to CLH, the steep and lasting rise can be expected over the next year, with moderate increase of LCH and ICD. Conclusions - Based on 2017-2018 forecasts for CLH, the precipitous and lasting increase can be expected over the next two years, with gradual rise of two major explanatory variables. By affording the assumption that the feedback among variables can exist, we can, in the future, consider more generalized models such as vector autoregressive model and structural equation model, to name a few.

무선랜에서의 실시간 및 비실시간 트래픽 스케줄링 (Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN)

  • Lee, Ju-Hee;Lee, Chae Y.
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

시계열 분석을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using Time Series Analysis.)

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제11권3호
    • /
    • pp.19-24
    • /
    • 2011
  • 소프트웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간 절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구 하였다. 시계열 분석에 이용되는 단순이동 평균법과 가중이동평균법, 지수평활법을 이용하여 미래고장 시간을 예측하여 비교하고자 한다. 실증분석에서는 고장간격 자료를 이용하여 모형들에 대한 예측값을 평균자승오차를 이용하여 비교하고 효율적 모형을 선택 하였다.

신경망을 이용한 컨테이너 물동량 예측에 관한 연구 (A Study on the Forecasting of Container Volume using Neural Network)

  • 박성영;이철영
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.183-188
    • /
    • 2002
  • 컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.

계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측 (Hierarchical time series forecasting with an application to traffic accident counts)

  • 이주은;성병찬
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.181-193
    • /
    • 2017
  • 본 논문에서는 계층적 시계열 자료 분석을 위한 대표적인 두 가지 방법인 상향식과 최적조합 예측법을 소개한다. 이러한 예측법은 계층적 시계열을 구성하는 모든 계열을 예측해야 하는 독립적 예측과 달리, 임의의 조정 과정이 없이 하위 계층 계열의 예측값의 합은 항상 상위 계층의 예측값과 일치하게 된다. 또한, 독립적 예측과 비교하여 예측력을 향상시킨다. 계층적 예측법의 효율성을 살펴보기 위하여 국내 16개 시도별 남녀 교통사고 발생건수 시계열 자료를 예측하였다. 이를 통하여 교통사고 발생건수에 대한 각 계층의 예측에서 계층적 방법과 독립적 방법의 차이점 및 우수성을 비교하였다.