• Title/Summary/Keyword: Explosion prevention

Search Result 144, Processing Time 0.045 seconds

Anti-tank impact absorption with a reinforced concrete plate design

  • Berivan Yilmazer Polat;Sedat Savas;Alper Polat
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.229-239
    • /
    • 2023
  • Anti-tank weapons are among the infantry weapons used by the armies of many countries. Anti-tank rockets and explosives such as TNT, generally used for armour piercing, are also frequently used in terrorist attacks. These attacks damage the protection facilities built from reinforced concrete. Rockets or similar explosives' rapid speed and burst temperatures pierce reinforced concrete during strikes, resulting in casualties and damage to crucial strategic structures. This study aimed to devise an economic and applicable reinforced concrete plate that could absorb the impact of anti-tank rockets and Trinitrotoluene (TNT) type explosives. Therefore, 5 different samples, produced from C50 reinforced concrete and 150×150 cm in size, were formed by combining plates of different numbers and thicknesses. Also, a sample, which was a single thick plate, was prepared. In destructive testing, Rocket Propelled Grenade (RPG-7) was used as the anti-tank rocket launcher. As a result of this study, the impact damage was reduced with hollow concrete plate geometries, and recommendations were developed for complete prevention.

A Study on the Prevention of Electrostatic Fire Explosion (정전기 화재폭발 예방에 관한 연구)

  • Ham, Eun-Gu;Heo, Dai-Seong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.385-386
    • /
    • 2022
  • 본 연구는 방폭지역에서 정전기를 측정하는 설비 (EST:Electrostatic Transmitter), 측정 된 정전기를 저감시키는 설비(EES:Electrostatic Elimination System), 방폭지역에서 인체 정전기를 제거시키는 설비(방폭 디지털 제전봉)를 통한 비방폭구역에서 사용되는 정전기 측정장비와의 비교를 통하여 극히 제한적인 Basic Design(온도/압력/속 도/유량)으로 인한 설계나 장치 등 변경 등을 반영하여 방폭지역에대한 근본적인 문제점을 도출 제거할수 있는 방안을 마련했으며 기존 사용되었던 비방폭지역의 정전기 제거 시스템을 보완한 방폭지역의 정전기 화재폭발 예방 기술을 적용하였다.

  • PDF

A Study on the Identification Technique and Prevention of Combustion Diffusion through ESS (Energy Storage System) Battery Fire Case (ESS (에너지 저장장치) 배터리 화재사례를 통한 감식기법 및 연소 확산방지에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.383-391
    • /
    • 2020
  • Purpose: To identify internal self ignition and ignition caused by external flames in energy storage rooms, and to analyze the difference between ignition due to overheating and ignition caused by external heat sources. Method: membrane melting point measurement, battery external hydrothermal experiment, battery overcharge experiment, comparative analysis of electrode plate during combustion by overcharge and external heat, overcharge combustion characteristics, external hydrothermal fire combustion characteristics, 3.4 (electrode plate comparison) / 3.5 (overcharge) /3.6 (external sequence) analysis experiment. Result: Since the temperature difference was very different depending on the position of the sensor until the fire occurred, it is judged that two temperature sensors per module are not enough to prevent the fire through temperature control in advance. Conclusion: The short circuit acts as an ignition source and ignites the mixed gas, causing a gas explosion. The electrode breaks finely due to the explosion pressure, and the powder-like lithium oxide is sparked like a firecracker by the flame reaction.

A Study on the Evaluation Model of Disaster Risks for Earthquake : Centering on the Cases of Cheongju City (지진에 대한 재해위험도 평가 모형에 관한 연구 - 청주시 사례 중심으로 -)

  • Jeong, Eui-Dam;Shin, Chang-Ho;Hwang, Hee-Yun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.67-73
    • /
    • 2010
  • Relatively high density of population and buildings exists in urban area mainly because of broad job opportunities and conveniences available. In other words, if happened, there might be high possibility of disaster which can not be easily recovered. The purpose of this study is to show evaluation approach of the risk degree resulted from the disaster, which considers the attributes of urban area. Cheongju-city in Chungcheongbuk-do is selected as sample district to be estimated. The degree of overall risk including fire risk, building collapse risk, evacuation risk and gas explosion risk etc. is analyzed in the designated area. The analysis suggests the highest risk degree in Bukmun-ro district which also shows CBD decline phenomenon. Therefore, it can be not only predicted that this area as old downtown has not been provided with disaster prevention operation and urban renewal project, but also judged that administrative assistances for the disaster are required possibly soon.

A Study on Quantitative Risk Assessment Method and Risk Reduction Measures for Rail Hazardous Material Transportation (철도위험물수송에 관한 위험도 정량화방안 및 경감대책 연구)

  • Lee, Sang Gon;Cho, Woncheol;Lee, Tae Sik
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • The object of this study is to develop a tool for quantifying risks related to the rail transportation of hazardous commodities and to present mitigation measures. In this study, the Quantitative Risk Assessment (QRA) is used as a risk analysis tool. Based on the previous explosion history (Iri explosion) and consideration of its high risk, Iksan-si is selected as a model city. The result, expressed as average individual risk for exposed people with various distance, indicates that the model city is considered to be safe according to the nuclear energy standard. Also, the mitigation measures are provided since Societal risk of Iksan-si is set within ALARP. Risk reduction measures include rail car design, rail transportation operation, demage spread control as well as derail prevention and alternative routes for reducing accident frequencies. Finally, it is expected to achieve high level of public safety by appling the risk reduction measures.

  • PDF

A Study on the Fire Risk Assessment and Prevention in the Recycling Process of Used Refrigerators (냉장고 파쇄 공정에서의 화재 위험성 및 예방에 관한 연구)

  • Lee, Su-Kyung;Song, Dong-Woo;Bae, Jeong-Ae
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.72-77
    • /
    • 2009
  • In the recycling procedure of the refrigerator, the fire frequently breaks out. In this study, to clarify the exact cause of the fire, the components and concentration of the materials produced in the process are analysed as well as the problems in the process system, and the protective measure to prevent the fire and the explosion fundamentally is proposed. In this procedure, the preventive measures of fire by removing the combustible materials such as polyurethane and inflammable gases, by removing the ignition sources and by reducing the oxygen concentration to the minimum are proposed along with the protective measures to reduce the damage in the fire. In the crushing procedure where the fire or explosion can break out in diverse ways, the forced ventilation or exhaust system applied to the small partial ventilation facility are installed to reduce the concentration of inflammable gas mixture to lower than the inflammable limit by injecting and exhausting the air forcibly.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

TRANSFORMER EXPLOSION AND FIRE PREVENTION (변압기 폭발/화재 방지 기술)

  • Kim, Hyung-Seung;Magnier, Philippe
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.93-94
    • /
    • 2007
  • An essential step for SERGI is to show the TRANSFORMER PROTECTOR (TP) efficacy for all transformers and all types of rupture of insulation. Its research program philosophy is thus to maintain a strong connection between experiments and the theoretical developments. Up to now, two TP test campaigns have been performed, both under the worst conditions by creating low impedance faults leading to electrical arcs inside the transformer tank dielectric oil. In 2002, Electricite de France performed 28 TP tests. Then, in 2004, a second campaign of 34 TP tests was carried out by CEPEL, the Brazilian independent High Voltage Laboratory. For the 62 tests, each transformer was equipped with the TP, which reacts directly to the moving dynamic pressure peak, shock wave, caused by the low impedance fault. When an electrical arc occurs, only one pressure peak is generated. The initial energy transfer is almost instantaneous, and so is the phase change. Because of the oil inertia, the gas is very quickly pressurised. As it is more difficult to vaporise a liquid than to crack oil-vapour into smaller molecules, the arc location would mainly remain in the gaseous phase after and less gas will be produced. As a result, when comparing tests for which pressure peaks are respectively equal to 8 bar (116 psi) and 8.8 bar (127 psi), the corresponding arc energies vary by an order 10 of magnitude (0.1 MJ and 1 MJ respectively). The correlation of the results obtained between arc energy and dynamic pressure demonstrates that the arc energy is not the key parameter during transformer tank explosion, which is in opposition with the common electrical engineers belief.

  • PDF

Case Study on Advanced Fire and Explosion Index (화재폭발지수 개선에 대한 사례 연구)

  • Na, Gun Moon;Seoe, Jae Min;Lee, Mi Jeong;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The F&EI technique is one of the risk assessments with many advantages. It can save time and effort compared to quantitative risk assessment (QRA). By using the evaluation result of this technique, it is possible to check the effectiveness of the investment cost. In addition, a relative risk ranking can be created and used to establish the facility management cycle and to prioritize investment. However, evaluating the target process can be evaluated more than the actual risk since the LCCF, a loss prevention measure, is too limited. In addition, calculating premiums via this method can result in excessive premiums, making it difficult to evaluate the risk precisely. Therefore, new safety guard was added to the LCCF of the F&EI risk assessment with reference to HAZOP and LOPA techniques. Newly added LCCFs are Deflagration arrester, Check valve, SIS, and Vacuum beaker, etc. As a case study, F&EI risk assessment was performed on Acetone storage tank of a API (Active pharmaceutical ingredient) plant to compare actual MPPD. The estimated loss amount was 592,558$ for the existing technique and 563,571$ for the improved technique, which was reduced by about 5% compared to the previous one.This proved that a more precise evaluation is possible and that the efforts for safety at the workplace are reflected in the evaluation results.

A Study on Prevention of Fire Accidents by Splash Filling in the Filtration Process of Pharmaceutical Companies (제약회사 여과 공정중 스플래쉬 필링에 의한 화재사고 예방대책에 관한 연구)

  • Kim, Sang Gil;Lee, Dae Joon;Yang, Seung Bok;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.29-34
    • /
    • 2021
  • Flammable substances are often present in the raw materials of pharmaceutical products manufactured by pharmaceutical companies. In this case, an excessive amount of flammable substances is added to make an intermediate, and flammable substances that do not participate in the reaction are removed through filtration and drying steps. In addition, the flammable liquid separated in the filtration process is accumulated in the form of splash filling in the filtrate container. In this case, vapor and mist of flammable liquid are generated, which lowers the lower limit of explosion and minimum ignition energy, and increases the risk of fire and explosion due to complex charging. In this study, by analyzing fire accidents that occurred during the recent filtration process of pharmaceutical companies, it is proposed to prevent static electricity accumulation by measures of nitrogen supply facilities, capacity improvement, conductive filter fabric and so on.